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Program ...

I Lecture 1: History & Basics
I Lecture 2: Linear Maps
I Lecture 3: Non-Linear Maps
I Lecture 4: Collective Effects (& Collisions)
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Karl Ferdinand Braun

I first cathode-ray tube in 1879
I 20 kV acceleration voltage
I magnetic & electrostatic focussing and guiding
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Ernest Rutherford I

I Ernest Rutherford’s historical experiment in
1919: nitrogen nuclei are disintegrated by
α-particles coming from radioactive decay of
Ra and Th ⇒ start of a new era for science

I only few light atoms can be modified using
particles from radioactive decays

I the dream of the ancient alchemists!
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Ernest Rutherford II
Rutherford in a famous speech at the Royal
Society asks for
I accelerators capable to disintegrate heavy

nuclei
I theory predicts the threshold for penetration of

the nucleus at ≈ 500 keV
I ⇒ from 1929 onwards, various labs start

developing “particle accelerators” for > 500 keV
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Early Times (1928-1930) I

Rolf Rolf Widerøe: a Norwegian student of electrical engineering at
Karlsruhe and Aachen. The X-ray transformer that he had chosen
for his PhD Thesis at Aachen University did not work, and he
was forced to choose quickly another subject. Inspired by a 1924
paper by Ising, a Swedish professor (acceleration of particles using
“voltage pulses”), in 1928 he put together for his thesis a device to
demonstrate the acceleration of particles by RF fields.

I in 1928, Rolf Widerøe developed the first linear accelerator,
which was a pivotal breakthrough in accelerator
technology [13]

I Widerøe’s work laid the foundation for future advancements in
particle acceleration
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Early Times (1928-1930) II
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Early Times (1928-1930) III
I the Van de Graaff generator, invented by Robert J. Van de

Graaff in 1929, uses a moving belt to transfer electric charge
to a high-voltage terminal [12]

I potentials in the range of millions of volts
I developed by John Cockcroft and Ernest Walton in the early

1930s, the Cockcroft-Walton accelerator uses a voltage
multiplier circuit to generate high voltages [3]
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Early Times (1928-1930) IV
I in the 1930s, Ernest O. Lawrence invented the cyclotron, a

type of circular accelerator. The cyclotron accelerated
particles along a spiral path using a constant magnetic field
and a rapidly varying electric field [6]

I this invention enabled particles to reach much higher energies
compared to previous linear accelerators
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Early Times (1928-1930) V
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More Modern Times I

I the next major advancement came in the 1940s with the
development of the synchrotron
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More Modern Times II
I the synchrotron kept the particles moving along a fixed circular

path, with the magnetic field strength increasing synchronously
with the particles’ energy [8]

I this allowed particles to achieve even higher energies,
facilitating more advanced research in particle physics

I a specific type of synchrotron, the electron synchrotron, was
developed to accelerate electrons to high energies

I he first successful electron synchrotron was built in 1949 at
the University of California, Berkeley, reaching energies of 300
MeV [2]

I following Widerøe’s design, linear accelerators (linacs) evolved
I the Stanford Linear Accelerator Center (SLAC), established in

the 1960s, is one of the most notable examples, with a
two-mile-long accelerator capable of reaching energies up to
50 GeV [9]

I in the latter half of the 20th century
I Large Electron-Positron Collider (LEP) from 1989 to 2000
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More Modern Times III
I Tevatron (1983 until its shutdown in 2011)
I Large Hadron Collider (LHC) first beam September 2008, start

experimental program March 2010
I the LHC, located at CERN, is currently the world’s largest and

most powerful particle accelerator, capable of accelerating
protons to energies of 7 TeV [5]

I Free-electron lasers (FELs) are a type of accelerator that
produce high-intensity coherent light across a wide range of
wavelengths
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More Modern Times IV
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I unlike conventional lasers, FELs use a beam of relativistic
electrons moving through a magnetic structure (undulator) to
generate light

I the unique properties of FELs make them invaluable in fields
such as material science, chemistry, and biology for probing the
structure of matter at atomic scales [7]
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More Modern Times V
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Advanced Concepts - Laser Wakefield Accelerator I
T. Tajima, J.W.Dawson Phys. Rev. Let. 43 (1979) 267

I conventional structures can accelerate with 20 . . .O(100)
MV/m

I In Plasma Wakefield Accelerators (PWA) an ionised gas is
formed by a laser or electron beam
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Advanced Accelerator Concepts
I dielectric laser accelerators (DLAs) leverage the high electric

fields generated by lasers interacting with dielectric structures
to achieve high acceleration gradients over short
distances [10].

I DLAs (Snowmass) are promising avenue for miniaturizing
I achieved acceleration gradients are as high as 1 GV/m
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Future Trends in Accelerator Technology
The future of particle accelerators is likely to be shaped by several
key trends and innovations aimed at enhancing their capabilities
and expanding their applications.
I more applications of particle accelerators: [11]
I compact accelerators: there is significant interest in

developing more compact accelerators that can achieve high
energies in smaller footprints and could lead to more
accessible and cost-effective accelerators for research, medical,
and industrial applications [4]
I dielectric laser accelerators
I plasma wakefield accelerators

I higher energy colliders: the quest for higher energy collisions
continues, with proposals for next-generation colliders such as
the Future Circular Collider (FCC) at CERN and the
International Linear Collider (ILC) [1]
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Future Trends in Accelerator Technology
VLHC http://www.nature.com/polopoly_fs/1.14149!/menu/main/topColumns/
topLeftColumn/pdf/503177a.pdf
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Livingston Plot
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Basics

F (x, t) =
dp
dt

= q [E(x, t) + v × B(x, t)]
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Classical Phase Space

qi

pi

t

P(t)
Consider a system of N identical particles and denote
by ξi(t) = (qi(t),pi(t) ∈ IRd × IRd the phase space
of the ith particle. In Hamiltonian mechanics
generalized coordinates and momenta are used instead

q = (q1, . . . , qNd) and p = (p1, . . . , pNd).

The phase space is a 2Nd dimensional manifold whose each point
P(t) corresponds to a possible microscopic state of the system.
Then the microscopic state of the system is equal to one point in
the 2·d ·N-dimensional phase space with coordinates

ξ = (q,p), (1)

known as the Γ-space (with d ·N-degrees of freedom). This
definition can be easy extended to include spin (or other
properties).
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Classical Phase Space I
The time evolution of points is associated with the N-particle
Hamiltonian H(ξ, t) through Hamilton’s equations

dqi

dt
=
∂H
∂pi

,
dpi

dt
= −

∂H
∂qi

. (2)

Consider a system with conservative forces we get for H

H =

N∑
i=1

p2
i

2m
+

N∑
i<j

φi ,j(qi ,qj) +

N∑
i=1

U(qi). (3)

The Coulomb potential energy is given by φi ,j = e2/|qi − qj | and
U(q) is the potential energy associated with the external field.
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Lie operators I
General Concept

Suppose we have a function f of the phase space variables,
coordinates q and conjugate momenta p:

f = f (q,p). (4)

Suppose we evaluate f at the location in phase space for a particle
whose dynamics are governed by a Hamiltonian H. The time
evolution of f using Hamilton’s equations becomes:

df
dt

=
∂H
∂p

∂f
∂q
−
∂H
∂q

∂f
∂p
. (5)

We define the Lie operator : g : for any function g(q,p):

: g : =
∂g
∂q

∂

∂p
−
∂g
∂p

∂

∂q
. (6)
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Lie operators II
General Concept

Constructing a Lie operator from the Hamiltonian, we can write:

df
dt

= − : H : f =
∂H
∂p

∂f
∂q
−
∂H
∂q

∂f
∂p
. (7)

Writing the time evolution of f in the form (7) suggests that we
can write the value of f at any time t as:

f (t) = e− : H : t f (0) =

∞∑
n=0

1
n!

(−t : H :)n · f (0),

where the exponential of the Lie operator is defined in terms of a
series expansion:

e− : H : t = 1− t : H : +
t2

2
: H : 2 −

t3

3!
: H : 3 + · · · . (8)
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Ensembles of Particles I

Remarks
I Individual trajectories can be represented by a path
I beam (or bunch of particles) is usually represented by a

distribution of particles, hence statistical quantities are
appropriate characteristics.

Given f ⊂ IRd × IRd and ρ(X) ∈ f a bunch of N particles, we
identify the following statistical moments:
I 0th order moment

∫
dXρ(X) = N

I 1th order moment, the centroid C = 1
N

∫
dXρ(X)X = 〈X〉

I 2th order moment, the beam matrix
Σ ≡ 〈(X− C) · (X− C)T 〉 = 〈X · XT 〉 − C · CT
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Ensembles of Particles II

Σ =
1
N

∫
dXρ(X)(X− C) · (X− C)T

Example: The Gaussian density distribution, in even d dimensions
(d = 2, 4, 6)

ρG (X) =
N√

(2π)d det Σ
exp

(
−
1
2

(X− C) · Σ−1 · (X− C)T
)

If we assume C = 0 and Σ =

(
σ2

x 0
0 σ2

px

)
in d = 2 we obtain the

usual definition of a Gauss distribution

ρG (x , px ) =
N

2πσxσpx

exp

(
−
x2

σ2
x
−

p2
x

σ2
px

)
(9)

It is the beam distribution is popular in beam tracking simulation
codes to probe the beam transport properties
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Emittance I
The emittance ε represents the phase-space volume occupied by
the particles of the beam. It is one of the most important
measures of particle accelerator physics because:

1. the emittance is an invariant of motion

2. the emittance is a beam quality concept reflecting the process
of bunch preparation (the injector chain), extending all the
way back to the source for hadrons

3. a low emittance particle beam is a beam where the particles
are confined to a small distance and have nearly the same
momentum

4. in a colliding beam accelerator, keeping the emittance small
means that the likelihood of particle interactions will be
greater resulting in higher luminosity
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Emittance II
Remark
I the lower the emittance, the easier it is to manipulate the

beam through beam pipe apertures, collimators, focal points
and radio frequency (RF) devises, to name the most important

I in case the emittance is to large, the beam must be cooled
wither with cooling rings (synchrotron radiation) electron
cooling (intra-beam scattering) with an external low
emittance electron beam or ionisation cooling, where the
beam is passing gazes or solid matter

Assuming a Gaussian distribution, the phase space volume is then
given by

Area = π
√

det Σ = πε (10)

with ε the so called Emittance.
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Emittance III
Depending on the transport topology we can decouple the phase
spaces and get for (x , px )

Σx =

(
σ11 σ21
σ12 σ22

)
→ (x , x ′)T Σ−1

x (x , x ′) = 1. (11)

In beam dynamics it is custom to write the ellipse equation in the
so called Courant-Snyder variables: α, β and γ

Σx = εxT with T ≡
(
β −α
−α γ

)
(12)

and detT = 1. The equation of the ellipse (Courant-Snyder
invariant) is then generated by

ε2x = (x , x ′)TT−1(x , x ′) = γx2 + 2αxx ′ + βx ′2 (13)
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Emittance IV
with x and x ′ the second moments of the distribution. This
describes a special case in which the sub-phase space Γx is
decoupled from the other degrees of freedom.
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Emittance V
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Liouville Theorem

The Phase Space Volume ε occupied by a beam population is
invariant of motion
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Study Complicated Phase Space! I
P. Berger MSc thesis
http://amas.web.psi.ch/people/aadelmann/ETH-Accel-Lecture-1/projectscompleted/phys/thesisBerger.pdf
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Modelling Challenges

I Structure Design (we will not discuss)
I Single particle dynamics

I linear optics
I non-linear optics

I Collective effects
I Maxwell + Particles in large and complicated structures
I Multi-scale, multi-physics modelling
I Large N-body problems (precision), requires HPC
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Single particle dynamics I
Consider the state vector ξ ∈ R6 of a particle and the superscript i
and f having the meaning initial and finale state respectively

M

ξi ξf

and M a linear map.
This picture describes a very general concept of modelling a
dynamic system which can be equivalently viewed as solving an
ordinary differential equation (ODE). The vector ξ defines
positions, momenta or a quantity such as the particle’s spin or
charge.

Zuoz Summer School 2024 Accelerator Physics & Modelling - Lecture 1 38/46



Vlasov-Maxwell I
When neglecting collisions, the Vlasov-Maxwell equation describes
the (time) evolution of the phase space f (x,p, t) > 0.
Now define v := v(p) = cp/

√
m2c2 + p2 and introduce the

incompressible-transport equation

∂f
∂t

+ v · ∇x f +
q
m

(E(x, t) + v × B(x, t)) · ∇v f = 0

with E and B the self-consitent fields.

∂tE(x, t)− c2curl B(x, t) = −
J
ε0
, ∇ · E(x, t) =

ρ

ε0

∂tB(x, t) + curl E(x, t) = 0, ∇ · B(x, t) = 0

I this is an example of a class of partial differential equations
PDE’s known as kinetic equations

I much simpler version, the Vlasov-Poisson equation, is
obtained, in the limit of vanishing magnetic fields.
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Coupling Particle Dynamics with Electromagnetic Fields

Generate
IC

f0,F0

Force Field Interpolation
from the Grid to the
Particles (gather)

Push Particles
(x , v)n

k → (x , v)n+1
k

Force Field Calculation
Fn

k → Fn+1
k

Densitie Field Inter-
polation to the Grid

(scatter) (x , v)k → (ρ, J)j

In case of precise particle accelerator modelling, resolving losses at
very low level, large N-body problems have to be solved.
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Modeling Challenges
I Multiscale / Multiresolution

I Maxwell’s equations or reduced set combined with particles
I N-body problem n ∼ 109 per bunch in case of PSI
I Spatial scales: 10−4 . . . 104 (m) → O(1e5) integration steps
I v � c . . . v ∼ c
I Large (complicated structures)

I Multiphysics
I Particle mater interaction: monte carlo
I Secondary particles i.e. multi specis

I Large Parameter Space to Optimize
I Multi Objective Optimization in a Pareto optimal sense
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The Particle Accelerator Modelling Universe
An Interdisciplinary Field of Science
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