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The Challenge

We have
I periodicity
I almost identical cells
We want
I study properties of the Lattice (stability)
I study dynamics of particles (long term

tracking)

M

ξi ξf
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Action of Beam-Line Elements

The action of each beam-line element can be described by a
(symplectic) map M. Charged particle motion is Hamiltonian,
and Hamiltonian flows generate symplectic maps

M

ξ(0) ξ(s)

Linear Elements (M) ...
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Action of Beam-Line Elements

The action of each beam-line element can be described by a
(symplectic) mapM. Charged particle motion is Hamilto-
nian, and Hamiltonian flows generate symplectic maps

M

ξ(0) ξ(s)

Non-Linear Elements (M) ...
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Setup I
The interaction between charged particle and electromagnetic field
depends only on the particle charge and velocity and on the field.

Gauss’ law ∇ · E =
ρ

ε0
(1)

Faraday’s law ∇× E = −
∂B
∂t

(2)

Ampère’s law ∇× B = µ0J +
1
c2
∂E
∂t

(3)

no mag. charges ∇ · B = 0 (4)

with B = ∇× A and P = γm0v + eA = p + eA we obtain the
"Hamiltonian" for particle accelerators

H = eφ+
√
c2(P− eA)2 +m2

0c4 .
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Setup II
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Coordinate System I

I using Frenet–Serret coordinates, we are able to describe
particle trajectories in IR3 naturally
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Coordinate System II
I assume we already know the ideal path r0(z) hence it is only

natural to transformed away the ideal path or the geometry of
the design beam transport line which is already well known to
us from the placement (LEGO) of the accelerator elements

I the new coordinates measure directly the deviation of any
particles from the reference particle.

A trajectory may follow a path described by

r(z) = r0(z) + dr

where dr accounts for the deviation of the ideal path.
Defining unit vectors u curvature κ we are able to obtain

dr = uxdx + uydy + uzhdz , with h = 1+ κxx + κyy .
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Constructing the Hamiltonian
Canonical Transformations
I t ⇒ s change of independent variable
I make all quantities small w.r.t reference trajectory
I transform into the curvilinear Frenet–Serret

h =
1
ρ

H = − (1+ hx)× (5)√(
1
β0

+ δ −
qφ
P0c

)2

− (px − ax )2 − (py − ay )2 −
1

β2
0γ

2
0

− (1+ hx) as +
δ

β0
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Drift Space
Set A = 0 expanding the Hamiltonian (6) to second order in the
dynamical variables

H2 =
1
2
p2

x +
1
2
p2

y +
1
2
δ2

β2
0γ

2
0

This is much simpler than Hamiltonians we have recently looked at
and the equations of motion is very easy, and we find once again
that the transfer matrix for a drift of length L is given by:

M =


1 L 0 0 0 0
0 1 0 0 0 0
0 0 1 L 0 0
0 0 0 1 0 0
0 0 0 0 1 L

β2
0γ

2
0

0 0 0 0 0 1


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Hamiltonian Inside a Quadrupole I

Bx = b2
y
r0

By = b2
x
r0

Bs = 0
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Hamiltonian Inside a Quadrupole II
I on the axis of the quadrupole, the field strength is zero.
I hence, choose the reference trajectory to lie along the axis
I we can work in a straight coordinate system.

The normalized vector potential reads with the normalized
longitudinal component

as = q
As

P0
= −

1
2
q
P0

b2

r0

(
x2 − y2)

and the normalised quadrupole gradient reads k1 = q
P0

b2
r0 .

Now the Hamiltonian can be written:

H =
δ

β0
−

√(
1
β0

+ δ

)2

− p2
x − p2

y −
1

β2
0γ

2
0
+
1
2
k1
(
x2 − y2) (6)
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Hamiltonian Inside a Quadrupole III
Expanding the Hamiltonian (Eq. 6) to second order in the
dynamical variables we construct the Hamiltonian:

H2 =
1
2
p2

x +
1
2
p2

y +
1
2
k1x2 −

1
2
k1y2 +

1
2β2

0γ
2
0
δ2

Remarks
I this looks very much like the harmonic oscillator equation; for

k1 > 0 we have a “focusing” potential in x, and a “defocusing”
potential in y

I In z there is no focusing of any kind

M =



• • 0 0 0 0
• • 0 0 0 0
0 0 • • 0 0
0 0 • • 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (7)
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M =



• • 0 0 0 •
• • 0 0 0 •
0 0 • • 0 0
0 0 • • 0 0
• • 0 0 1 •
0 0 0 0 0 1


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Periodic, Uncoupled, Linear Beamlines I

I we have Mi

I we can calculate the trajectory of a charged particle along an
element

Next is to study particle or beam “dynamics” by considering a
beamline with N elements

M =

N∏
i=1

Mi

and
xf = M · xi .

Critical for this will be the fact that the transfer matrices are
symplectic. This is why we went to so much trouble with
Hamiltonian mechanics: exact solutions to Hamilton’s equations
are guaranteed to produce symplectic maps (Liouville’s theorem).
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Periodic, Uncoupled, Linear Beamlines II
Tackling beamline optics for a general beamline is too big a step all
at once. To provide a “gentler” introduction, we will begin by
considering a linear beamline with two important properties.

1. The beamline is periodic: it consists of a repeated unit, or
“cell”, itself consisting of a given set of elements.

2. The beamline is uncoupled: the transfer matrices for each
individual element are block-diagonal.

After developing this special (but very important) case, we shall
return to the more general case.

Zuoz Summer School 2024 Accelerator Physics & Modelling - Lecture 2 20/40



Periodic, Uncoupled, Linear Beamlines III

Remarks
I if we understand the dynamics in one (periodic) cell, we

understand the optics in the entire beamline
I proof by the use of the Floquet’s Theorem of ODE’s.
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Transfer Matrix for a Thin Quadrupole I
We shall use the “thin lens” approximation for the quadrupoles.
That is, we shall take the limit L→ 0, k1L→ 1

f where L is the
length of the quadrupole, k1 is the normalized quadrupole gradient,
and f is a constant (the “focal length” of the quadrupole).

MQ(f ) =



1 0 0 0 0 0
−1/f 1 0 0 0 0
0 0 1 0 0 0
0 0 1/f 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (8)
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Transfer Matrix for a FODO Cell I
For the horizontally focusing quadrupole, we write:

f = 2f0

since the cell starts half-way through a horizontally focusing
quadrupole; for half a quadrupole, the focal length is twice that for
a full quadrupole. For the vertically focusing quadrupole:

f = −f0.

The total transfer matrix is:

M = MQ (2f0) ·MD(L) ·MQ (−f0) ·MD(L) ·MQ (2f0) (9)

Performing the matrix multiplications in (9), we find the transfer
matrix for a full FODO cell:
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Transfer Matrix for a FODO Cell II

M =



1− L2

2f 2
0

L
f0 (L+ 2f0) 0 0 0 0

L
4f 3

0
(L− 2f0) 1− L2

2f 2
0

0 0 0 0

0 0 1− L2

2f 2
0

− L
f0 (L− 2f0) 0 0

0 0 − L
4f 3

0
(L+ 2f0) 1− L2

2f 2
0

0 0

0 0 0 0 1 2L
β2

0γ
2
0

0 0 0 0 0 1


(10)

Let us consider the case L = 1m, f0 =
√
2 m. Take a particle with

initial coordinates at the start of a FODO cell:

x = 1mm, px = 0, y = 1mm, py = 0 (11)

Now track the particle through 100 FODO cells by applying the
transfer matrix (10) to the vector xi , and plot px , x and py , y :
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Transfer Matrix for a FODO Cell III
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Transfer Matrix for a FODO Cell IV

Horizontal (top) and vertical (bottom) phase space through a FODO cell.
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Stability of the MAP I
Ansatz: the map is written in general form:

M2 =

(
cosµx + αx sinµx βx sinµx
−γx sinµx cosµx − αx sinµx

)
= 1 cosµ+J sinµ

(12)
For a FODO cell, the horizontal part of the transfer matrix is,
from (10):

M2 =

 1− L2

2f 2
0

L
f0 (L+ 2f0)

L
4f 3

0
(L− 2f0) 1− L2

2f 2
0

 (13)

With (12) and (13), we find that the phase advance across the cell
is given by:

cosµx = 1−
L2

2f 2
0

(14)

Note that if L/f0 > 2, the cell is unstable.
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Stability of the MAP II
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Tune

Qx =
1
2π

∫
C
µx(s)ds
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Tune-Diagram
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Hamiltonian for a Sextupole I
A sextupole field can be derived from the vector potential:

Ax = 0, Ay = 0, As = −
1
6
P0

q
k2
(
x3 − 3xy2) . (15)

and the sextupole strength is denoted by k2.

H = −

√(
1
β0

+ δ

)2

− p2
x − p2

y −
1

β2
0γ

2
0

+
1
6
k2
(
x3 − 3xy2)+ δ

β0
.

(16)

Remark
I The equations of motion are non-linear
I the Hamiltonian is non integrable

To track a particle through a sextupole, we have to take one of
two approaches:
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Hamiltonian for a Sextupole II
1. integrate the eqm numerically (e.g. using a Runge-Kutta,

Leap-Frog, or other suitable schemes) or

2. make some approximations that will enable us to write down
an approximate map in closed form

Drawbacks of numerical integration:
I they tend to be rather slow
I often, we are interested in tracking tens of thousands of

particles, thousands of times around storage rings consisting
of thousands of elements.

I we shall make some approximations that will enable us to
write down a map in closed form

I There are various ways to do this, we use the idea of Lie
transformations
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Hamiltonian for a Sextupole III
I Lie transformations provide a means to construct a dynamical

map in closed form, even from a Hamiltonian that is non
integrable

I again it is necessary to make some approximations, and these
need to be understood in some detail

Using Lie operator notation, we can write the map for a particle
moving through the sextupole as:

ξ(s) = e− : H : s ξ(0) (17)

with ξ = (q,p)T . Since the Lie transformation evolves the
dynamical variables according to Hamilton’s equations (for the
Hamiltonian H) the map expressed in the form (17) is necessarily
symplectic. Since application of a Lie transformation just involves
differentiation and summation (of an infinite series) we can, in
principle, apply the map in this form, for any Hamiltonian.
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Sextupole map: What about symplecticity
Map to second order in s.

xf = xi +
pxis√
1− px2

i

−
k2x2

i s
2

4
(
1− px2

i

) 3
2
+O(s3), (18)

pxf = pxi −
1
2
k2x2

i s −
k2 xipxi s2

2
√
1− px2

i

+O(s3). (19)

The higher order terms get increasingly complicated and difficult to
interpret.

How important is the symplectic error?

The following plots compare the results using sextupole maps of
different orders in s. Note that we use a linear phase advance of
0.246× 2π between sextupoles, a sextupole length of 0.1m, and a
sextupole strength k2 = −6000m−3.
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Sextupole map: Lie transformation approach
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Sextupole map: Lie transformation approach
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Sextupole map: Lie transformation approach
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Sextupole map: Lie transformation approach
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Sextupole map: Lie transformation approach
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Sextupole map: Lie transformation approach
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