

Zuoz -Low energy Particle Physics II.

Anna Soter

ETH zürich

The intensity- and precision frontier

Complementary way to search for new physics
 We are looking for rare events, and small energy shifts
 Indirect search, to see the "footprint" of new physics by precise observation of particles, in forms of:

Forbidden decays / precision decays

ΔE

Energy shifts in interactions

Hydrogen - comparison to other exotic atoms

antihydrogen

- Orbits: r ~ 1/m , E₀ ~ m/n²
- Fine structure: LS coupling spin- and angular momentum of the orbiter, Dirac equation
- Lamb: shifts from various QED corrections
- Hyperfine structure: nuclear spin
- Finite size effect, E_{fs} ~ m³R²

Low Energy Particle Physics, Zuoz, Anna Soter

3

Precision experiments in ion traps

CERN facilities - creating antiprotons

The Antimatter Factory @ CERN

- Ca. 3×10⁷ antiprotons from PS on iridium target
- From E~3 GeV to E=5.3 MeV deceleration in AD

Further deceleration to 70 keV in ELENA, few 10⁶ antiprotons in ~2 min cycles

Necessary ingredients for baryon assymetry (Sakharov's conditions)

- Too small to explain baryon asymmetry (SM only explains 10⁻¹⁰ of what we need!)
- Need new phenomena.
 - Many theories, such as:
 - **CP** violation in the leptonic sector
 - Lorentz/CPT violation

- Violating CPT has huge consequences, means also Lorentz violation

The challenge of making measurements with antiprotons

Both antiprotons and positrons must be captured in electrostatic fields

Other exotic atoms:

Only way to keep p in the vicinity of matter

Low Energy Particle Physics, Zuoz, Anna Soter

... how Hollywood imagines it

Ion traps - the Paul trap

In 3 dimensions, we can't construct a static electric potential that traps in every direction.

Best we can do is a saddle.

Changing polarity at a given frequency (rotating the saddle) can trap a particle of a given q/m ratio

working principle of a Penning trap

technique described in this paper its is sizes dry for the other even $y = \omega_c \dot{x} - \frac{\omega_z^2}{2}y = 0.$

four radial segments (see figure 1b). This enables an additional small 2° 2°

Simple modifications make it

Laser cooling in the Penning trap (b (a) Ζ to be split into fo Figure 1. (a) Electrode structure Penning trap with a splitting elect 10 mm experiments [21]. Note force out segments from the right image have +This forces the ions into cycletron-like loops electrode shapes that differ semewhat framith the axialization technique described in this pap to be split into four radial segments (see figure radially guadrupolar electric potential to be a an ion with charge e due to the In the x and y dimensional dimensionad dimensionad dimensionad dimensiona force $B - e \nabla \phi$,

results in simple harmonic motion with a frequ $\frac{1}{2z_{1}^{2}+r_{2}^{2}}$ is the tr defining a new va $\omega_z =$ In the x and y directions (1) leads to the coup

E Z Ving h solution

Classical motion in axial and radial direction

• The magnetic field $\vec{B} = \begin{pmatrix} 0 \\ 0 \\ B \end{pmatrix}$ confine the particle in the x-y plane. • The electric field $\vec{E} = \vec{\nabla}\phi = \frac{V_0}{2d^2} \begin{pmatrix} x \\ y \\ -2z \end{pmatrix}$ confine the particle in the z-direction

Classical motion:

$$m\vec{a} = q(\vec{E} + \frac{\dot{\vec{r}}}{c} \times \vec{B}) = q\frac{V_0}{2d^2} \begin{pmatrix} x \\ y \\ -2z \end{pmatrix} + q\frac{\dot{\vec{r}}}{c} \times \begin{pmatrix} 0 \\ 0 \\ B \end{pmatrix}$$

→ z-axis:
$$mz'' = -\frac{qV_0}{d^2}z$$

⇒ harmonic oscillation in axial direction $z = z_0 \cos(\omega_z t + \phi_z)$ with $\omega_z = \frac{q}{r}$

- Only B-field in z-direction \rightarrow pure cyclotron motion $\omega_c = rac{eB}{c}$ \rightarrow x-y plane:

- Adding the small electrostatic pot. $\phi_{xy} = \frac{V_0}{4d^2}(x^2 + y^2)$
 - magnetron motion and small modification of cyclotron frequency

$$\begin{pmatrix} x \\ y \end{pmatrix} = r_{+} \begin{pmatrix} \cos(\omega_{+}t + \phi_{+}) \\ \sin(\omega_{+}t + \phi_{+}) \end{pmatrix} + r_{-} \begin{pmatrix} \cos(\omega_{-}t + \phi_{-}) \\ \sin(\omega_{-}t + \phi_{-}) \end{pmatrix} \qquad \qquad \omega_{\pm} = \frac{\omega_{+}}{2mc} \pm \sqrt{\left(\frac{eB}{2mc}\right)}$$

 $\frac{qV_0}{md^2}$

Low Energy Particle Physics, Zuoz, Anna Soter

hohes elektrisches Potential \rightarrow kleine Kreise

> niedriges elektrisches Potential \rightarrow große Kreise

> > [M. Wagner]

EHzürich

13

Quantized energy levels in a Penning trap

cyclotron $\omega_z/2\pi \approx 115 \text{ MHz}$ $\gamma_z^{-1} \approx 0.03 \text{ s}$ axial $\bar{n}_z = 100$ $\gamma_m^{-1} \approx 10^{12} \text{ s}$ $\omega_m/2\pi \approx 48 \text{ kHz}$ $\bar{n}_m = 100$ magnetron

Measurement of g factors in Penning traps

region of a homogeneous magnetic field. An electron in a Penning trap has three orthogonal motional modes, a cyclotron motion in the Penning trap ω_c' slightly modified by the electrostatic trap potential, axial motion ω_{z} , and magnetron motion ω_{m} . Connection:

$$\omega_c = \sqrt{\omega_+^2 + \omega_-^2 + \omega_z^2}$$

Low Energy Particle Physics, Zuoz, Anna Soter

EHzürich 15

Measurement princliple of magnetic moments

zi zürich

Low Ene

Axial frequency detection

The particle oscillates in axial direction inside the Penning trap, and induces image currents in the trap electrodes. Depending on the strength of coupling, it thermalizes

In thermal equilibrium, the particle shorts the thermal resonator noise at the axial frequency, that appears as a dip in the FFT spectrum

Axial dip with single particle

Measurement of the cyclotron frequency

Is "not" possible to directly detect the cyclotron frequency \rightarrow Couple the cyclotron and spin frequencies to the axial frequency When a spin or cyclotron jump occurs \rightarrow small but measurable change of the axial frequency.

Low Energy Particle Physics, Zuoz, Anna Soter

nickel rings

Typical electronics for axial eigenfrequency detection

Low Energy Particle Physics, Zuoz, Anna Soter

Sturm

Axial Potential

A successful quantum jump is observed by measuring a tiny shift of the axial frequency

$$\left. + n \right)$$

 $\frac{g}{2}m_s$

n=0

(c)

$$f_c = \bar{v}_c - \frac{3}{2}\delta$$

 $n=1$
 $\bar{v}_a = v_s - \bar{v}_c$

m_s=-1/2

m_s=+1/2

CLASSICAL CONTINUOUS Axial frequencies are modified depending on STERN-GERLACH STERN-GERLACH the spin state SEPARATION IN POSITION SPACE SEPARATION IN FREQUENCY SPACE Z potential B (c) $\Delta z = \frac{\mu L^2}{2KE} B_1$ $\Delta \omega_z = -\frac{\mu}{B_2}$ axial position z $m\omega_{\tau}$

the spin states can be analyzed

Low Energy Particle Physics, Zuoz, Anna Soter

With axial measurement in the analysis trap,

n = 2 vz shift / ppb 30 20 n = 1 10 n = 00 10 20 30 0 time / s

•With the e^{-} in the $|0,\uparrow\rangle$ state, pulse the cyclotron drive (150 GHz)

- •Look for excitations to n = 1
- •Make a histogram of excitations versus frequency

Measurement of the Electron Magnetic Moment

X. Fan,^{1,2,} T. G. Myers,² B. A. D. Sukra,² and G. Gabrielse^{2,}

¹Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA ²Center for Fundamental Physics, Northwestern University, Evanston, Illinois 60208, USA (Dated: September 28, 2022)

The electron magnetic moment in Bohr magnetons, $-\mu/\mu_B = 1.001\,159\,652\,180\,59\,(13)\,[0.13\,\text{ppt}]$, is consistent with a 2008 measurement and is 2.2 times more precise. The most precisely measured property of an elementary particle agrees with the most precise prediction of the Standard Model (SM) to 1 part in 10^{12} , the most precise confrontation of all theory and experiment. The SM test will improve further when discrepant measurements of the fine structure constant α are resolved, since the prediction is a function of α . The magnetic moment measurement and SM theory together predict $\alpha^{-1} = 137.035999166(15)[0.11 \text{ ppb}]$

arXiv:2209.13084v1

BASE experiment

Measurement of the cyclotron frequency:

$$\omega_c \sim \frac{Q_{\bar{p}}}{m_{\bar{p}}} \cdot B$$

Spin-precession (Larmor) frequency:

$$\omega_L \sim \frac{g_{\bar{p}}}{2} \frac{Q_{\bar{p}}}{m_{\bar{p}}} B \rightarrow g_{\bar{p}} = \frac{2\omega_L}{\omega_c}$$

= 2.7928473453(30) $\frac{(q/m)_{\bar{p}}}{m} + 1 = 3(16) \times 10^{-12}$ $(q/m)_p$

Low Energy Particle Physics, Zuoz, Anna Soter

Result: comparison of the p and \bar{p} Q/m ratio and g-factor (magnetic moments:)

Nature, 524 196–199, (2015) Nature 550, 371 (2017) Nature 601 53-57 (2022)

25

contact=Sotezürich

Single antiproton / proton in a Penning trap

Fundamental properties of conjugate particles/antiparticles are supposed to be identical.

Test of fundamental symmetries: CPT invariance is linked to Lorentz-invariance and the construction of Quantum Field Theory.

M. Charlton, S. Erikson, G. M. Shore, "Antihydrogen and Fundamental Physics", Springer Verlag, ISBN 978-3-030-51713-7 (2020).

The matter excess in the universe is not understood. Antimatter abundance is irrelevant on cosmic scales, e.g. composition of high-energy cosmic rays, absence of annihilation radiation

R. Kappl et al., J. Cosmology Astropart. Phys. 09, 051 (2014). S. Dupourqué, L. Tibaldo, P. von Ballmoos, Phys. Rev. D 103, 083016 (2021).

No process that is asymmetric in the production/annihilation of particles and antiparticles has been observed.

Usual measurements: charge to mass & magnetic moment

Or any other ratio of masses

Low Energy Particle Physics, Zuoz, Anna Soter

Smorra

Precision measurements - with new physics?

Larmor Frequency modifications

Lorentz- and CPT-violation Axion wind / Axion-like particles (Permanent electric dipole moment)

Cyclotron Frequency modifications

Lorentz and CPT-violation Antiproton gravitation anomalies

$$\Delta \omega_L = \frac{\Delta g}{2} \frac{q}{m} B + \Delta \omega_{Axion} \sin(\omega_a t) + d_{EDM} \cdot \left| \vec{E} \right|_{a}$$
$$\Delta \omega_C = \Delta \left(\frac{q}{m} \right) B + (3\alpha - 2) \frac{U_{grav}}{c^2}$$

Axions:

EDM: Standard Model Extension: Y. Ding et al., Phys. Rev. D 94, 056008 (2016). Antimatter gravitation: P. Graham et al., Ann. Rev. Nucl. Part. Sci. 65, 485 (2015). C. Smorra, Y. Stadnik et al., Nature 575, 310-314 (2019).

Low Energy Particle Physics, Zuoz, Anna Soter

 $|n_++1'\rangle$ $|n'_+\rangle$

/ħ

D. Budker, Y. Semertzidis et al., (in preparation). R. J. Hughes et al., Phys. Rev. Lett. 66, 854 (1991).

EIH zürich 28

First generation precision measurements with BASE

$$\frac{\omega_{L,p/\bar{p}}}{\omega_{c,p/\bar{p}}} = \frac{g_{p/\bar{p}}}{2} = \pm \frac{\mu_{p/\bar{p}}}{\mu_N}$$

 $\frac{\omega_{c,\bar{p}}}{\omega_{c,p}} = \frac{q_{\bar{p}}/m_{\bar{p}}}{q_p/m_p}$

Single antiproton / proton in a Penning trap

 \overline{B} I $V_k \leftarrow$ $\Phi(z)$

Invariance-Relation

$$v_{c} = \sqrt{v_{+}^{2} + v_{-}^{2} + v_{z}^{2}}$$

$$v_c = \frac{1}{2\pi} \frac{q_{ion}}{m_{ion}} B$$

Cyclotron frequency relates measurable quantity to fundamental properties of trapped charged particle

Signal (dBm)

Low Energy Particle Physics, Zuoz, Anna Soter

Slides: S. Ulmer

30

Measurement of proton / antiproton magnetic moments

Low Energy Particle Physics, Zuoz, Anna Soter

Slides: S. Ulmer

E *H* zürich

Continuous Stern-Gerlach effect with antiprotons

Energy of magnetic dipole in magnetic field

$$\Phi_M = -(\overrightarrow{\mu_p} \cdot \overrightarrow{B})$$

Leading order magnetic field correction

$$B_z = B_0 + B_2 \left(z^2 - \frac{\rho^2}{2} \right)$$

This term adds a spin dependent quadratic axial potential -> Axial frequency becomes function of spin state

$$\Delta v_z \sim \frac{\mu_p B_2}{m_p v_z} := \alpha_p \frac{B_2}{v_z}$$

- Very difficult for the proton/antiproton system.

 $B_2 \sim 300000 T/m^2$

- Most extreme magnetic conditions ever applied to single particle.

 $\Delta v_z \sim 170 \ mHz$

Single Penning trap method is limited to the p.p.m. level

Slides: S. Ulmer

Frequency Measurement Spin is detected and analyzed via an axial frequency measurement

32

Below - ppm measurements

Two particle: Larmor partilce (L) in analysis trap, cyclotron particle (C) in precision trap. Measurement cycle (ca 900 s):

- of (C) in 3 consecutive times
- electronde
- RF spin-flip pulse is initiaded
- positions
- 6. Spin state of (L) identified
- times

DOI: 10.1038/ncomms14084

1. Initialization of the spin state of (L) in the analysis trap with alternating spin-flip drives and axial frequency measurements 2. Measurement of the cyclotron frequency

3. Particle (C) is transversed to the parking

4. Partilce (L) moved into the precision trap, 5. Particle (L) (C) brought back to initial

7. Cyclotron frequency of (C) are measured 3

Why reference it to He ions?

- Systematic uncertainties due to the particle position are large (~10⁻⁹)
- No significant uncertainties in converting the lacksquaremass ratio

$$\frac{m_{\rm H^-}}{m_{\rm p}} = (1 + 2\frac{m_{\rm e}}{m_{\rm p}} - \frac{E_{\rm b}}{m_{\rm p}} - \frac{E_{\rm a}}{m_{\rm p}} + \frac{\alpha_{\rm pol,H^-} B_0^2}{m_{\rm p}})$$

- $R_{theo} = 1.0010892187542(2)$
- Measure free cyclotron frequencies of antiproton and H⁻ ion.

Low Energy Particle Physics, Zuoz, Anna Soter

(0.2 ppt)

Magnetic moment measurements

Year	Proton g _p /2	Antiproton g _{pbar} /2	CPT $\left {{m{g}}_{p}}/{{m{g}}_{\overline{p}}} ight $ $-$ 1	Collaboration
2011	2,792 847 353 (28)	2.786 2 (83)	0.002 4 (29)	Pask (ASACUSA)
2013	2.792 846 (7)	2.792 845 (12)	0.000 000 4 (49)	diSciacca (ATRAP)
2014	2.792 847 349 8 (93)	2.792 845 (12)	0.000 000 8 (43)	Mooser(BASE)/diSciacca (ATRAP
2016	2.792 847 349 8 (93)	2.792 846 5 (23)	0.000 000 30 (82)	Mooser/Nagahama (BASE)
2017/1	2.792 847 349 8 (93)	2.792 847 344 1 (42)) 0.000 000 002 0 (36)	Mooser/Smorra (BASE)
2017/2	2.792 847 344 62 (82)	2.792 847 344 1 (42)) -0.000 000 000 2 (15)	Schneider/Smorra (BASE)
			· ,	
J. diScia	acca et al., Phys. Rev. Lett. 201	2		
J. diScia	acca et al., Phys. Rev. Lett. 201	3 –		
J. diScia	acca et al., Phys. Rev. Lett. 201	3		
A. Moos	er et al., Nature 2014			
A. Moos	er et al., Nature 2014	, _		
H. Naga	hama et al., Nat. Comms. 2017	·		
A. Moos	er et al., Nature 2014			
C. Smor	ra et al., Nature 2017			-
C. Smorr	ra et al., Nature 2017	1		
G. Schne	eider at al., Science 2017	I		-
			-4 -2 0	2 4 6
	' '	'		

CPT tests

Year	Matter $g/2$	Antimatter $\overline{g}/2$	CPT $ m{g}/\overline{m{g}} -1$	System				
1987	1.001 159 652 188 9 (43)	1.001 159 652 187 9 (43)	0.000 000 000 000 5 (21)	electron/positron				
2006	1.001 165 921 5 (11)	1.001 165 920 4 (12)	0.000 000 001 1 (12)	muon (μ^-, μ^+)				
2017	2.792 847 344 62 (82)	2.792 847 344 1 (42)	0.000 000 000 2 (15)	proton/antiproton				
elec muo	tron/positron on (μ^-, μ^+)							
prot	on/antiproton		BISE					
10 ⁻³⁰ SME:								
$ \begin{pmatrix} i\gamma^{\mu}D_{\mu} - m - a_{\mu}\gamma^{\mu} - b_{\mu}\gamma_{5}\gamma^{\mu} \end{pmatrix}\psi = 0 $ $ b_{\mu}\gamma_{5}\gamma^{\mu} \rightarrow b_{x}\begin{pmatrix} -\sigma_{x} & 0 \\ 0 & \sigma_{x} \end{pmatrix} + b_{y}\begin{pmatrix} -\sigma_{y} & 0 \\ 0 & \sigma_{y} \end{pmatrix} + b_{z}\begin{pmatrix} -\sigma_{z} & 0 \\ 0 & \sigma_{z} \end{pmatrix} $ $ b_{\mu}\gamma_{5}\gamma^{\mu} \rightarrow b_{x}\begin{pmatrix} -\sigma_{x} & 0 \\ 0 & \sigma_{y} \end{pmatrix} + b_{z}\begin{pmatrix} -\sigma_{z} & 0 \\ 0 & \sigma_{z} \end{pmatrix} $								

Low Energy Particle Physics, Zuoz, Anna Soter

36
Recent improvements

Improved comparison of the proton/antiproton q/m ratios:

Low Energy Particle Physics, Zuoz, Anna Soter

$= -1.000\ 000\ 000\ 003\ (16)$

Constrain of 10 coefficients of the

 $|\delta\omega_{c}^{p} - R_{\overline{p},p,exp}\delta\omega_{c}^{p} - 2R_{\overline{p},p,exp}\delta\omega_{c}^{e^{-}}| < 1.96 \times 10^{-27} \text{ GeV}$

Differential test for gravitational

 $\frac{1}{O(t_0)}$

Limit

< 0.03

M. Borchert et al., Nature 601, 53–57 (2022).

Limitations by magnetic field fluctuations

Impact on frequency ratio measurements in the BASE-CERN apparatus

Block stability of cyclotron frequency shifts:

$$\sigma_r = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{\nu_{c,2i} - \nu_{c,2i-1}}{\nu_{c,2i}}\right)^2}$$

Low Energy Particle Physics, Zuoz, Anna Soter

About 45 mins per block, 40 frequency measurements

EHZÜRICH 38

BASE-Step: antiprotons outside BASE

Basis is the reservoir trap system developed in BASE, but:

- The trap system is inside a transportable superconducting magnet ٠
- The trap can has an open injection/ejection channel for antiprotons ٠ C. Smorra et al., Int. J. Mass Spectr. 389, 10-13 (2015).

S. Sellner et al., New J. Phys. 19, 083023 (2017).

Precision experiments with antihydrogen

Formation of antihydrogen

1) Direct spontaneous radiative recombination

$$\overline{\mathbf{p}} + \mathbf{e}^+ \to \overline{\mathbf{H}} + \mathbf{h}\nu, \quad \Gamma_{\mathrm{srr}} \sim n_e T_e^{-0.63}$$

Dipole allowed free-bound transition that favours capture into strongly bound state.

2) Three body recombination

$$\overline{\mathbf{p}} + \mathbf{e}^+ + \mathbf{e}^+ \to \overline{\mathbf{H}} + \mathbf{e}^+, |\Gamma_{tbr} \sim n_e^2 T_e^{-4.5}$$

Elastic encounter of 2 e⁺ in the \overline{p} continuum thus energy transfer around kT_e -> capture into weakly bound state

3) Charge- exchange with Ps

$$\bar{p} + Ps^* \to \bar{H}^* + e^- \qquad \sigma \sim \pi a_o^2 n_{Ps}^4$$

Necessary ingredients: high density, low energy antiprotons and positrons

Final internal states	<i>n</i> < 1
Expected rates	few 10
[J. Stevefelt et al., PRA 12 (1975) 12	[M. E. Glinsky

Trapping of antiprotons

Cooling and trapping of positrons

(2) Transport to main solenoid

(3) In main solenoid: 3 regions of decreasing density N2 buffer gas and potential:

- The gas provides the dissipation mechanism. To prevent annihilation: differential pumping.
- Rotating wall: makes the plasma spin faster, and squeeze axially (angular momentum) conservation)
- Lowering the electrode voltage evaporative cooling: plasma reaches several 10's of degree Kelvin

Low Energy Particle Physics, Zuoz, Anna Soter

6-waysegmented

Transfer to mixing trap

Transfer efficiency ~ 35%: 50 x 10⁶ in mixing trap

Positron plasma : r~2mm, I~32mm, n~2.5 x 10⁸ / cm³

Lifetime: ~hours

Low Energy Particle Physics, Zuoz, Anna Soter

Penning-Malberg trap

Positron-antiproton mixing

ALPHA experiment - first trapping of H

Atoms with magnetic moment acquire a potential in a magnetic field according to the formula:

Force $\vec{F} = \vec{\mu} \nabla \vec{B}$ $U = -\vec{\mu} \cdot \vec{B} \quad \Box > 0$

Anti-Helmholtz coil configuration - magnetic quadrupole field

The ALPHA experiment in 2009

Low Energy Particle Physics, Zuoz, Anna Soter

The ALPHA experiment (2009) - First trapping

To demonstrate trapping ramp down magnetic field and look for annihilations on the beam pipe

- Potential problem: "mirror trapping" of bare \overline{p} in homogenous B field —> Solution:
- Mixing with heated e+ (suppresses anti-H production)
- Release anti-H while applying E field: pbars would be deflected
- Background from cosmics: rejected by topology Simulation for antihydrogen 30 20 t [ms] 10 0 Simulations for bare pbars 30 20 t [ms] 10 0 -0.1 -0.2 0 z [m]

0.1 0.2

Antihydrogen trapping rates and confinement time

Confinement time up to 1000 s -> allows for precision spectroscopy of anti-hydrogen:

- H in the ground state (remember H formed in highly excited Rydberg state takes about 1 second to deexcite to ground state)

- Present numbers: >20 antihydrogen atoms every 4 minutes, accumulating several 1000 H in 8 hours

First interaction of Antihydrogen with radiation

First detection of the 1S-2S transition

а

b

Two-photon transition at 243nm driven by a resonant cavity locked to the frequency, passing through the centre of the trap

M Ahmadi et al. Nature 541, 506–510 (2017) doi:10.1038/nature21040

ALPHA-2: First detection of the 1S-2S transition

When laser on resonance \rightarrow number of trapped H depleted because of photoionisation of atoms in the same excitation laser.

Туре	Number of detected events	Background	Uncertainty
Off resonance	159	0.7	13
On resonance	67	0.7	8.2
No laser	142	0.7	12

 $f_{d-d} = 2,466,061,103,064(2) \text{ kHz}$ $f_{\rm c-c} = 2,466,061,707,104(2) \text{ kHz}$

No difference between hydrogen and antihydrogen transition frequency at the level of 10⁻¹⁰

Measurement of the 1S-2S line shape

Prospects: laser cooling to decrease the temperature —> narrower line

Low Energy Particle Physics, Zuoz, Anna Soter

Laser drives 1S-2S transition (2-photon) A third photon drives it to continuum: lost in the

Microwave removes 1Sc states, then ramping down the magnet probes 1Sd atoms

Measured transition:

=2,466,061,103,079.4(5.4)kHz

Calculation for hydrogen in 1T field f_{d-d}

=2,466,061,103,080.3(0.6)kHz

Results in agreement within

 2×10^{-12}

Measurement of the HFS in ALPHA

Low Energy Particle Physics, Zuoz, Anna Soter

Measurement of the H Lamb shift in ALPHA

2S transition frequency

trapped antihydrogen atoms

Fine-structure splitting (2P1/2–2P3/2) in antihydrogen, combined with previously measured value of the 1S-

Data points obtained from the detected spinflip events, normalized to the total number of

Measurement of gravitational fall ALPHA-g

Vertical trap \rightarrow 1% measurement

- Laser cooling not necessary, though it helps.
- Slow down the magnet turnoff by a factor of ten.
- Turnoff the mirror coils only, radial confinement
- Current imbalance in mirror coils can tune the result
- Further future interferometry: atomic fountain measurements $\rightarrow 0.0001\%$

Low Energy Particle Physics, Zuoz, Anna Soter

E *H* zürich

Measured escape of antihydrogen

Fig. 3 | Escape histograms. The raw event z-distributions are displayed as histograms for each of the bias values, including the $\pm 10g$ calibration runs. These are uncorrected for background or detector relative efficiency. The time window represented here is 10 s to 20 s of the magnet ramp-down. The z-cut regions are indicated by the solid, diagonal lines. Explicitly, the acceptance regions in z are [-32.8, -12.8] and [12.8, 32.8] cm for the 'down' and 'up' regions, respectively.

 $a_{\overline{\alpha}} = (0.75 \pm 0.13 \text{ (statistical + systematic)})$

Low Energy Particle Physics, Zuoz, Anna Soter

ETH zürich 58

Nature volume 621, pages 716–722 (2023)

± 0.16 (simulation))g, where g = 9.81 m s⁻²

Precision decays

Decays forbidden by Standard Model

Charged lepton flavour violation

Low Energy Particle Physics, Zuoz, Anna Soter

Mu3e

ETH zürich

Searches for charged lepton flavor violation

MEG experiment: $\mu^+ \rightarrow e^+ + \gamma$

MEG II setup

Low Energy Particle Physics, Zuoz, Anna Soter

Better uniformity w/ 12x12 VUV SiPM

x2 Beam Intensity

35 ps resolution w/ multiple hits

Full available stopped beam intensity 7 x 10⁷

Latest news from MEG-2 and currents status

- Physics run started at the end of September 2021, collecting statistics at the moment
- Goal sensitivity of ~ 6×10^{14}
- Next to the main program: exotic searches, like X17

Data from the first Physics Run2021

Mu3e, the $\mu^+ \rightarrow e^+e^+e^-$ search

Low Energy Particle Physics, Zuoz, Anna Soter

• Bhaba-scattering

Mu3e experiment - hardware construction

Low Energy Particle Physics, Zuoz, Anna Soter

intensity **O(10⁸)**

Mu3e status

Low Energy Particle Physics, Zuoz, Anna Soter

CHIPP contact Wattorich

Searches for Muon to Electron conversions

- ▶ Current best limit: $B(\mu N \rightarrow e N) < 6.5 \times 10^{-13}$ (90% C.L., Ti) $B(\mu N \rightarrow e N) < 7.0 \times 10^{-13} (90\% C.L., Au)$
- To reduce backgrounds requires pulsed beams ⊳
- Efforts under way at J-PARC and Fermilab ⊳

magnitude depending on target

Eggli, Thesis Uni. Zürich (1995)

Bertl et al., Eur. Phys. J. C 47, 337 (2006)

Improve limit by 2 orders by 2020 and 4 orders by 2023

PIONEER - precision pion decays

1 & 2: Altmannshofer, W., et al. arXiv preprint (2022) arXiv:2203.01981 [hep-ex].

1: V. Cirigliano and I. Rosell, Phys. Rev. Lett. 99, 231801 (2007), arXiv:0707.3439 [hep-ph].

2: A. Aguilar-Arevalo et al. (PIENU), Phys. Rev. Lett. 115, 071801 (2015), arXiv:1506.05845 [hep-ex]

3: R. Aaij et al. (LHCb), Phys. Rev. D 97, 072013 (2018), arXiv:1711.02505 [hep-ex]. 4: D. P. Aguillard et al. (The Muon g=2 Collaboration) Phys. Rev. Lett. 131, 161802 (2023) arXiv:2308.06230 [hep-ex]. 5: A. Carvunis, A. Crivellin, D. Guadagnoli, and S. Gangal, (2021), arXiv:2106.09610 [hep-ph].

Goals of the PIONEER measurements

Phase I: approach theoretical predictions (x15)

▶ Phase II: 3-10 fold increase

Motivation:

- Hints for lepton flavour universality violation in $B \rightarrow D^{(*)}$ decays³
- Anomalous μ magnetic moment • measurement⁴
- Observed forward-backward asymmetry ۲ in $B \rightarrow D^{(*)}$ decays to e/μ^5

Motivation:

Hints for Cabibbo angle anomaly

combining results of various experiments³

https://arxiv.org/abs/2203.01981

Motivations for Phase II. - Vud / CKM unitarity

How to measure a branching ratio?

Electron

The devil in the details: measuring tails in an energy spectra

What we need: a trigger to suppress $\pi \rightarrow \mu$

 $R_{e/\mu} = \frac{N_{right}}{N_{left}} [1 + C_{tail}]$

PIONEER schematics

Low Energy Particle Physics, Zuoz, Anna Soter

From S.Hochrein

The sensitive target - ATAR

Calorimeter

Test beam 2023 at PSI:

 Explore possibility of a LYSO calorimeter

Key parameters:

- Energy resolution
- Uniformity
- Fast detector response • Simulated energy spectrum¹ 10° 10-2 $\pi \rightarrow \mu \rightarrow e$ Relative Scale $\pi \to e$ 10⁻⁸ 50 70 20 30 40 60 80 10 Energy [MeV]

Possible calorimeter choices¹: LYSO crystals

Low Energy Particle Physics, Zuoz, Anna Soter

From S.Hochrein

Things we did not discuss: Neutron EDM, muon EDM, muon g-2....

Neutron electric dipole moment (nEDM) at PSI

SM expectation:

 n_{\cdot}

 $\underline{n_B - n_{\overline{B}}} \sim 10^{-18}$

Motivation: Barion Asymmetry

▶New physics is needed to explain the BA ▶more CP violation is a necessary ingredient ▶ EDMs are sensitive probes for CP-violation Several EDM discoveries are needed to uncover underlying physics

▶Neutrons in a bottle, superimposed E, B fields

$$H = \vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E}$$

C-even
P-even
T-even
T-odd

	С	Р	Τ
₫	1	+	-
đ	1	+	I
Ē	I	-	+
₿	-	+	-

VS.

Measure the difference of precession frequencies in parallel/anti-parallel fields:

$$\hbar \Delta \omega = 2d_{n} \left(E_{\uparrow\uparrow} + E_{\uparrow\downarrow} \right) + 2\mu_{n} \left(B_{\uparrow\uparrow} - B_{\uparrow\downarrow} \right)$$

for
$$d_{\rm n} < 10^{-26}$$
 $\omega_{\rm L} \approx 30 {\rm Hz}$

UCN source at PSI

▶ delivery of ~4 M UCN every 300 s during HIPA operation

Neutrons can be contained (in material vessels) for long times, if they are below certain energies

 $350 \text{ neV} \leftrightarrow 8 \text{ m/s} \leftrightarrow 500 \text{ Å} \leftrightarrow 3 \text{ mK}$

Largest worldwide UCN density in PSI measured using standardized vessel

Shutter

nEDM and nEDM-2

Best current nEDM limit from first PSI measurement

d_n<1.8 ·10⁻²⁶ eCm C.Abel et al. Phys.Rev.Lett. 124 (2020) 081803

New apparatus n2EDM@PSI - will improve sensitivity by at least a factor 10 in the baseline setup - 1x10-27 ecm - potential to rule out a large parameter space of theories

E.g: nEDM and LHC sensitivity to supersymmetric baryogenesis in the minimal supersymmetric standard model (MSSM). Supersymmetric mass µ and gaugino mass M1 parameter space leading to observed value of the baryon asymmetry.

Low Energy Particle Physics, Zuoz, Anna Soter

CHIPP contact: Kirzürich 81

nEDM-2 setup

Essential to reach 1×10^{-27} ecm sensitivity goal (baseline)

- highest UCN intensity (PSU UCN Source)

Ultracold neutron

(UCN) Source

- ultraprecise control and measurement of homogeneous magnetic field
- record magnetically shielded room shielding factor 100`000 at 0.01Hz operating
- 57 km coils for active magnetic shield operating
- \bullet magnetic field system at 1 μT and 60 ppm homogeneity operating
- UCN double storage vessel chambers and beamline ready
- start nEDM measurements 2024 500 days for 10-27 e⋅cm sensitivity goal

Low Energy Particle Physics, Zuoz, Anna Soter

CHIPP contact Kirzürich 82

Neutron Beam EDM - towards alternative methods precision

New complementary neutron EDM search using a pulsed beam

 Project based in Bern with proofof-principle experiments at PSI and ILL

 Full-scale experiment intended for ESS (European Spallation Source), competitive to UCN experiments

> Piegsa, *PRC* 88, 045502 (2013) Chanel et al., *EPJ Conf.* 219, 02004 (2019) Schulthess et al., *PRL* 129, 191801 (2022)

Low Energy Particle Physics, Zuoz, Anna Soter

CHIPP contact: Piegsarich 83

QNeutron - towards measuring the neutron charge

- 0
- 0

Low Energy Particle Physics, Zuoz, Anna Soter

Neutron Talbot-Lau interferometer using absorption gratings

Proof-of-principle phase with experiments at PSI and ILL

Goal: measure the neutron charge with improved sensitivity at ESS

Piegsa, PRC 98, 045503 (2018)

CHIPP contact: Piegarich 84

Experiments with muon beams

Project funded by

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Economic Affairs, Education and Research EAER State Secretariat for Education, Research and Innovation SERI

muEDM at PSI

Phase approach using the frozen-spin technique in a compact solenoid

- $\sigma(d) \le 3 \times 10^{-21}$ Demonstration phase 2022 – 2027: •
- Dedicated instrument 2029 203?: •
- Possible signal (EFT analysis)

PAUL SCHERRER INSTITUT

• New collaboration (welcome to join!) with institutions from: Germany, Italy, Switzerland and UK

 $\sigma(d) \le 6 \times 10^{-23}$:

 $d \sim \text{few} \times 10^{-22}$

MUSE experiment

- Proton form factor + radius + 2γ + lepton universality measurement at PSI with elastic scattering of e^{\pm} , μ^{\pm} from hydrogen
- Fall 2022: Scattering data
 - Took data in all experiment kinematics on H, C, empty cell
 - Second veto detector, inside the target chamber, used to reduce background
- Upgrades since Fall 2022
 - Progress in analysis, improving coding, debugging, geometry, noise suppression, corrections, tracking, reconstructed time and position resolutions
- 2023: Long run 1.
 - 5 months beam time awarded and scheduled
 - Reviewed 2022 operations at spring 2023 collaboration meeting, for 2023 operation planning
- 2024 and 2025: Similar beam times expected

Cool preserve bright positive muc

Major PSI upgrade: the IMPACT project

Anna Soter 2023 CHIPP Plenary, Low Energy Particle Physics

Construction of two new solenoidbased beamlinesfor µSR and particle physics delivering 10^{10} surface muons per second

Keeps PSI on the forefront of muon physics for the next 20 years

Construction of new spallation target with online isotope mass separation

Production of radioisotopes for medical applications in quantities suitable for clinical studies

Enables novel cancer therapies with isotopes suitable for simultaneous imaging and treatment

HIMB

Construction of new target station **TgH** at the place of the existing TgM

TATTOOS

CHIPP contact: Knecht, Kirch

Thank you!

