Accelerator Physics & Modelling Zuoz Summer School Lecture 4: Collective Effects

Andreas Adelmann

Paul Scherrer Institut, Villigen E-mail: andreaad@ethz.ch

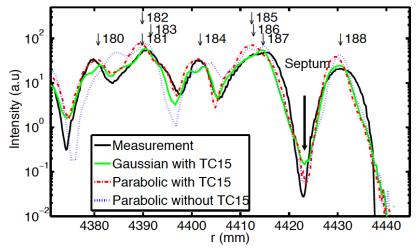
August 4-10, 2024

Zuoz Summer School 2024 Accelerator Physics & Modelling - Lecture 4

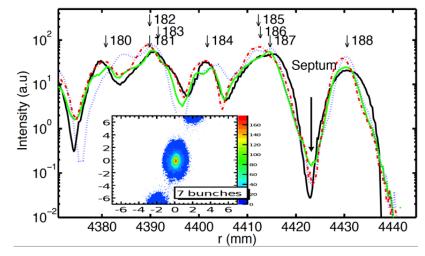
Precise Beam Dynamic Simulations I

PSI Ring Cyclotron

Precise Beam Dynamic Simulations II PSI Ring Cyclotron



Precise Beam Dynamic Simulations III PSI Ring Cyclotron



where the source terms are computed by

$$\rho = \sum q \int f \, d\mathbf{v}, \qquad \mathbf{J} = \sum q \int f \, \mathbf{v} \, d\mathbf{v}.$$

no transient behaviour *p_f*

► **J** ~ 0

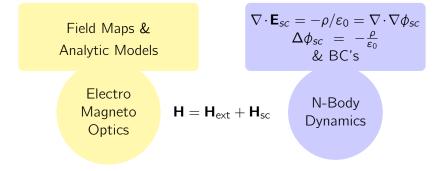
Collision-less (non relativistic) Vlasov-Poisson equation

$$\nabla \cdot \mathbf{E} = -\frac{\rho}{\varepsilon_0}$$

$$\mathbf{E} = \nabla \phi$$

$$\nabla \cdot \nabla \phi = \Delta \phi = -\frac{\rho}{\varepsilon_0}$$
with appropriate boundary conditions.

Zuoz Summer School 2024 Accelerator Physics & Modelling - Lecture 4

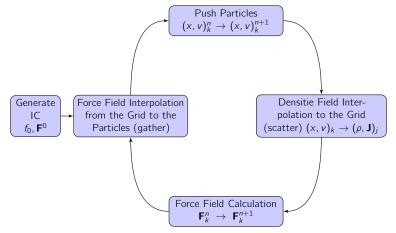


Split Operator techniques: (Yoshida splitting)

$$\mathcal{M}(s) = \mathcal{M}_{\text{ext}}(s/2)\mathcal{M}_{\text{sc}}(s)\mathcal{M}_{\text{ext}}(s/2) + \mathcal{O}(s^3)$$

Problem: s vs. t

Coupling Particle Dynamics with Electromagnetic Fields



In case of <u>precise</u> particle accelerator modelling, resolving losses at very low level, large N-body problems have to be solved.

A Direct FFT-Based Poisson Solver I

Assume you know G the Green's function

The solution of the Poisson's equation

$$abla^2 \phi = -
ho/arepsilon_0$$
 ,

for the scalar potential, ϕ can be expressed as:

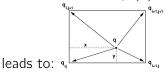
$$\phi(x, y, z) = \int \int \int dx' dy' dz' \rho(x', y', z') G(x - x', y - y', z - z'),$$
(1)

where G is the Green function and ρ is the charge density.

A Direct FFT-Based Poisson Solver II

Assume you know G the Green's function

Discretisation of Eq. (1) on a grid with cell sizes h_x , h_y and h_z



$$\phi_{i,j,k} = h_x h_y h_z \sum_{i'=1}^{M_x} \sum_{j'=1}^{M_y} \sum_{k'=1}^{M_z} \rho_{i',j',k'} G_{i-i',j-j',k-k'}, \qquad (2)$$

The solution of Eq. (2) can be obtained using FFT based convolution:

$$\phi_{i,j,k} = h_x h_y h_z \text{ FFT}^{-1}\{(\text{FFT}\{\rho_{i,j,k}\}) \otimes (\text{FFT}\{G_{i,j,k}\})\}$$

A Direct FFT-Based Poisson Solver III

Assume you know G the Green's function

Algorithm Electrostatic Field Calculation:

- \triangleright Scatter all q_i to nearby mesh points to obtain ρ
- \triangleright *L*-transform to obtain ρ in beam rest frame.
- \triangleright Use FFT on ρ and G to obtain $\hat{\rho}$ and \hat{G}
- \triangleright Determine $\widehat{\phi}$ on the grid: $\widehat{\phi} = \widehat{\rho} \cdot \widehat{G}$
- \triangleright FFT⁻¹ on $\widehat{\phi}$ to obtain ϕ
- \triangleright Finite Difference computation for ${\bf E}=-\nabla\phi$
- $\triangleright \ \mathcal{L}^{-1}\text{-transform}$ to obtain $\textbf{E}_{\textit{sc}}$ and $\textbf{B}_{\textit{sc}}$
- \triangleright Interpolate (gather) **E**, **B** at particle positions **x** from **E**_{sc} and **B**_{sc}
- 1. Go to Fourier space $\rho_h \to \widehat{\rho}_h$, $G_h \to \widehat{G}_h$ and convert the convolution into a multiplication $\widehat{\phi}_h = \widehat{\rho}_h * \widehat{G}_h$ in $\mathcal{O}(N \log N)$
- 2. Use a parallel FFT, particle and field load balancing

Object Oriented Parallel Particle Library (OPAL)

https://gitlab.psi.ch/OPAL/src/wikis/home

OPAL is a versatile open-source tool for charged-particle optics in large accelerator structures and beam lines including 3D EM field calculation, collisions, radiation, particle-matter interaction, and multi-objective optimisation

- OPAL is built from the ground up as an HPC application
- OPAL runs on your laptop as well as on the largest HPC clusters
- OPAL uses the MAD language with extensions
- ▶ OPAL is written in C++, uses design patterns,
- The OPAL Discussion Forum: https://psilists.ethz.ch/sympa/info/opal

Object Oriented Parallel Particle Library (OPAL)

https://gitlab.psi.ch/OPAL/src/wikis/home

- International team of 13 active developers and a user base of *O*(100)
- The OPAL sampler command can generate labeled data sets using the largest computing resources and allocations available

The Active OPAL Developer Team

Zuoz Summer School 2024 Accelerator Physics & Modelling - Lecture 4

Two OPAL flavours, OPAL-t & OPAL-cycl

Common features

- ▶ 3D space charge: in unbounded, and bounded domains
- particle Matter Interaction (protons)
- parallel hdf5 & SDDS output
- sampler & multi-objective optimisation
- from e, p to Uranium (q/m is a parameter)
- OPAL-cycl (+ FFAs + Synchrotrons)
 - neighbouring turns
 - time integration, 4th-order RK, LF, adaptive schemes
 - find matched distributions with linear space charge
 - spiral inflector modelling with space charge
- OPAL-t
 - rf-guns, injectors, beamlines ¹
 - auto-phasing (with veto)
 - ▶ full EM in undulator element since OPAL 2021.1
 - Particle-Particle-Particle-Mesh solver since OPAL 2022.1

¹Proton therapy gantries & degrader

Zuoz Summer School 2024 Accelerator Physics & Modelling - Lecture 4

Software Architecture

MPI based

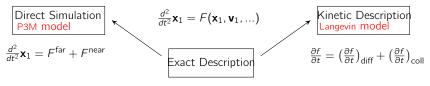
OPAL

classic	MAD-Parser	Flavors: t,Cycl	Distributions	
	Solvers: ES/EM	Integrators	PMI, WFC	
H5hut	FFT	D-Operators	NGP,CIC,TSI	
	Fields	Mesh	Particles	
BOOST	Load Balancing	Domain Decomp.	Communication	
	Particle-Cache	РЕТЕ	Trillions Interface	
	GSL	MITHRA	Trilinos	

Collisions

Zuoz Summer School 2024 Accelerator Physics & Modelling - Lecture 4

Introduction



► *F* denotes a force, *f* is the phase space distribution function

- The direct simulation approach has two terms representing the far field F^{far} and the near field F^{near} forces
- ▶ In the kinetic description, $\left(\frac{\partial f}{\partial t}\right)_{\text{diff}}$ refers to the diffusion term, which contains the mean field, while $\left(\frac{\partial f}{\partial t}\right)_{\text{coll}}$ represents the collision operator

Ultracold Sources

- Applications in electron diffraction (imaging) and free electron lasers profit greatly from high brightness beams.
- A promising candidate for such beams are photoinjectors with ultracold photocathodes.

Observable	Magneto Optical Traps	Ultra Cold Photo	Regular Photo injec- tor
		Injector	
e [–] Temperature [K]	< 10	50 <	1e3 - 1e4
Beam Charge [pC]	1000	-	100-3000
Emittance [mm.mrad]	0.04	$\propto 0.05$	1
Brightness [A/m²·sr]	1e16	\propto 1e16	1e12 - 1e13
Bunch Length [ps]	0.1-1	-	< hundreds

The P^3M Algorithm

Implementation following [?]

 $\mathrm{P^3M} = \textbf{P}\text{article-}\textbf{P}\text{article} + \textbf{P}\text{article-}\textbf{M}\text{esh}$

- high resolution from PP part
- good performance from PM part
- adjustable influence of Coulomb collisions

Particle-Particle (PM):

- 1. interpolate charges to mesh (CIC, NGP,...)
- 2. solve for potential Φ using an FFT solver (fast Possion solver)
- 3. compute forces by $F = -\nabla \Phi$
- 4. interpolate forces to particles \Rightarrow Electric field

Particle-Particle (PP):

- 1. compute linked lists for particles in interaction radius r_e
- 2. compute short range forces
- 3. update electric field

The Poisson Equation

The electrostatic potential $\Phi(\mathbf{r})$ of a system of interacting point charges $q_i(\mathbf{r})$ with charge distribution $\rho(\mathbf{r})$ is described by the Poisson Equation.

$$abla^2 \Phi(\mathbf{r}) = -
ho(\mathbf{r})$$

With the appropriate Green's function

$$G(\mathbf{r},\mathbf{r}') = \frac{1}{|\mathbf{r}-\mathbf{r}'|}$$

interpreted as the potential that arises due to a point charge at \mathbf{r}' , the solution for an arbitrary charge distribution is given by the convolution

$$\mathbf{\Phi}(\mathbf{r}) = \int G(\mathbf{r},\mathbf{r}')\rho(\mathbf{r}')d^3\mathbf{r}'$$

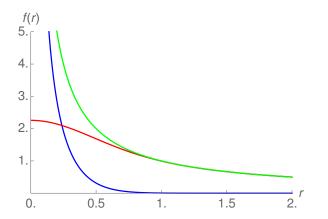
Interaction Splitting I

The main concept behind the P3M algorithm is a splitting of the interaction function G(r) into a **short-range** contribution $G_{pp}(r)$ and a **long-range** contribution $G_{pm}(r)$. This splitting can be done using a Gaussian screening charge distribution

$$G(r) = \frac{1}{r} = \underbrace{\frac{1 - erf(\alpha r)}{r}}_{G_{PP}} + \underbrace{\frac{erf(\alpha r)}{r}}_{G_{PM}}$$

Interaction Splitting II

Gaussian shaped (S3) screening charge, $\alpha = 2$



Disorder Induced Heating (DIH) Process

- case relevant for electron diffraction
- after the electron gun in an accelerator particle positions are disordered and the beam is rather cold
- in a cold beam (near-zero temperature) with high density, stochastic Coulomb interactions (collisions) encounter
- in order to achieve this ratio, the local disorder is transformed into disorder associated with the particle momenta during the simulation
- the phase space volume increases \Rightarrow the beam is heated
- equilibrium solution \Rightarrow solving the hypernetted-chain equation

DIH Setup for Validation

The experimental setup and simulation parameters

- ► spherical, cold beam of radius $R = 17.74 \,\mu\text{m}$ and charge $Q = 25 \,\text{fC}$ with uniform spatial distribution
- constant focusing applied
- cubical domain with edge length $L = 100 \,\mu m$
- ▶ P³M simulation over 5 plasma periods
- $\mathcal{M}_{PM} = 256^3$; r_c varying from $0 \,\mu\mathrm{m}$ to $3.125 \,\mu\mathrm{m}$
- simulation over 1000 time-steps
- the normalized x-emittance for the thermal equilibrium is

$$\varepsilon_{x,n}^{eq} = 0.491 \,\mathrm{nm}$$

obtained by solving the hypernetted-chain equation

P3M Results - DIH

