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Radiative corrections & Collider Observables
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The Higgs total cross section (cont’d)
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๏  After averaging over colour & spin states, the partonic XS reads 


๏  Total cross section is simply given by 

̂σ0 = Agg δ(1 − z)

  Recap: The leading order (LO) cross section

f(τq) = arcsin2 ( 1/τq) if τq ≥ 1

f(τq) = −
1
4

ln
1 + 1 − τq

1 − 1 − τq

− iπ

2

if τq < 1
τq = 4m2

q /m2
h

Agg =
αs(μR)2

π
1

256v2 ∑
q∈loop

τq(1 + (1 − τq) f(τq))

2

, z =
m2

h

̂s

σ0 = ∫
1

0
dx1dx2 fg(x2, μF)fg(x1, μF) m2

h Agg δ( ̂s − m2
h) = m2

h Agg ℒgg ( m2
h

s ) ℒij(τ) = ∫
1

τ

dx
x

fi(x, μF) fj ( τ
x

, μF)
Parton (gluon) 

luminositŷs = x1x2s

QCD vertex

Yukawa vertex
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  Recap: NLO calculations (e.g. for  partonic process)2 → 2
2

2ℜ⎨ ⎬
2

∼ 𝒪(g4
s ) ∼ 𝒪(α2

s )

∼ 𝒪(α3
s )

LO‡   
(only tree-level diagrams)

NLO‡   
1) Add a virtual loop to the LO process 

and expand the squared norm


2) Add a real emission to  
the LO process

+

|𝒜(0) + αs𝒜(1) |2 = |𝒜(0) |2 + αs 2ℜ𝒜(0)(𝒜(1))† + …

‡ We use representative diagrams, the actual number of Feynman diagrams explodes with the perturbative order

๏  In our case the Born process is given by , i.e. the one-loop diagram gg → h



๏  A way to simplify the NLO calculation is to consider the limit 


➡ Effective field theory (EFT) Lagrangian reads


➡ Excellent approximation for the total XS up to an overall rescaling

mt → ∞

We reduce the 
complexity of the 

problem by a loop order!  
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  Heavy-top effective field theory

⊗

̂σ0 → ̂σEFT
0 =

α2
s

π
1

576v2
δ(1 − z)

ℒggH =
1
2v

C ( μ2

m2
t ) h Ga

μνG
μν
a

Wilson coefficient 𝒪(αs)

Since  we can calculate radiative 
corrections in the EFT and then rescale by the ratio 

of LO cross sections.

mh < 2 mt̂σ0

̂σEFT
0

≃ 1.066
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๏  QCD is a renormalisable gauge theory


➡ Loop integrals diverge at most logarithmically in the UV ( )


➡ All divergences can be systematically absorbed into the Lagrangian bare parameters ( )


๏  To regularise the divergences (preserving Lorentz invariance), we continue to  space-time 
dimensions: divergences show up as poles at 

q2 → ∞

mq, αs

D = 4 − 2ϵ
ϵ = 0

  Path to NLO: UV divergences and running of αs

∫
d4q

(2π)4
→ μ2ϵ ∫

dDq
(2π)D

α(0)
s → αs(μ)Zg , Zg = f(ϵ)(1 −

β0

ϵ
αs(μ) + 𝒪(α2

s ))
Unphysical 

renormalisation scale

 to regularise theory in the UV
ϵ > 0 (D < 4)
UV divergence 

(pole)

Renormalisation is what 
drives the running of αsdαs(μ)

d ln μ2
= β(αs(μ)) = − β0 α2

s (μ) + 𝒪(α3
s )

∼ μ2ϵ ∫
dDq

q2(q + p)2
∼ ( μ2

−p2 )
ϵ

( 1
ϵ

+ 𝒪(ϵ0))qμ
pμ



๏  Phase-space (& loop) integrals diverge logarithmically in the soft ( ) and/or collinear  ( ) limits.   
 At the squared amplitude level this leads to the following factorisation theorems (here @ lowest order) 

E → 0 θ → 0

8

  Path to NLO: Infrared & collinear divergences

pμ

kμ

⏟
∼ 1

2p ⋅ k ≫ 1

Propagator nearly on-shell  factorisation→
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  Path to NLO: Infrared & collinear divergences

…
… kμ

pμ
i

pμ
3

pμ
n

pμ
2

pμ
1

𝒜n+1𝒜†
n+1 ≃

⏟
kμ→0

− 4π μ2ϵαs

n

∑
i,j=1

pi ⋅ pj

pi ⋅ k pj ⋅ k
𝒜n(Ti ⋅ Tj)𝒜†

n

Soft factorisation

pμ

kμ

⏟
∼ 1

2p ⋅ k ≫ 1

Propagator nearly on-shell  factorisation→

๏  Phase-space (& loop) integrals diverge logarithmically in the soft ( ) and/or collinear  ( ) limits.   
 At the squared amplitude level this leads to the following factorisation theorems (here @ lowest order) 

E → 0 θ → 0



๏  Phase-space (& loop) integrals diverge logarithmically in the soft ( ) and/or collinear  ( ) limits.   
 At the squared amplitude level this leads to the following factorisation theorems (here @ lowest order) 

E → 0 θ → 0
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  Path to NLO: Infrared & collinear divergences

…
… kμ

pμ
i

pμ
3

pμ
n

pμ
2

pμ
1

𝒜n+1𝒜†
n+1 ≃

⏟
kμ→0

− 4π μ2ϵαs

n

∑
i,j=1

pi ⋅ pj

pi ⋅ k pj ⋅ k
𝒜n(Ti ⋅ Tj)𝒜†

n

‡ Here we neglect spin correlations between the hard squared amplitude and the splitting kernel

Soft factorisation Collinear factorisation‡

pμ
i,a…

…pμ
i

pμ
3

pμ
n

pμ
2

pμ
1

pμ
i,bpμ

kμ

⏟
∼ 1

2p ⋅ k ≫ 1

Propagator nearly on-shell  factorisation→

𝒜n+1𝒜†
n+1 ≃

⏟
θab→0

8π
sab

μ2ϵαs Pai(z, ϵ) 𝒜n𝒜†
n



๏  Phase-space (& loop) integrals diverge logarithmically in the soft ( ) and/or collinear  ( ) limits.   
 At the squared amplitude level this leads to the following factorisation theorems (here @ lowest order)


๏  The Kinoshita-Lee-Nauenberg (KLN) theorem guarantees the cancellation of IRC divergences when  
 summing over all possible physical states (real & virtual corrections)


๏  Dimensional regularisation can be used to regularise IRC divergences too, this time with 

E → 0 θ → 0

ϵ < 0 (D > 4)

11

  Path to NLO: Infrared & collinear divergences

…
… kμ

pμ
i

pμ
3

pμ
n

pμ
2

pμ
1

𝒜n+1𝒜†
n+1 ≃

⏟
kμ→0

− 4π μ2ϵαs

n

∑
i,j=1

pi ⋅ pj

pi ⋅ k pj ⋅ k
𝒜n(Ti ⋅ Tj)𝒜†

n

‡ Here we neglect spin correlations between the hard squared amplitude and the splitting kernel

Soft factorisation

pμ

kμ

⏟
∼ 1

2p ⋅ k ≫ 1

Propagator nearly on-shell  factorisation→ Collinear factorisation‡

pμ
i,a…

…pμ
i

pμ
3

pμ
n

pμ
2

pμ
1

pμ
i,b

𝒜n+1𝒜†
n+1 ≃

⏟
θab→0

8π
sab

μ2ϵαs Pai(z, ϵ) 𝒜n𝒜†
n



12

๏  The one-loop corrections to the ggh vertex lead to the following contribution to the partonic XS


➡ Include UV counter-term stemming from strong coupling renormalisation‡

  Virtual corrections

292 S. Dawson / H i ggs boson produc t i on

F i g . 5 . Feynman d i agr ams g i v i ng v i r t ua l con t r i bu t i ons t o t he subprocess gg - H i n t he i n f i n i t e t op - qua r k
mass l i m i t .

The p l us d i s t r i bu t i ons a r e de f i ned i n t e rms o f t he i n t egr a l s

t dx f ( x )

�

-

�

i f ( x ) - f (Q )
x f o x

t f ( x )
l og ( x )

- _ f t dx [ f ( x ) - f (O ) ] l og ( x )

�

(3 . 21)
ft x

�

x+

Comb i n i ng eqs . (3 . 19) and (3 . 21) , we f i nd f or t he r ea l con t r i bu t i on t o t he c ross
sec t i on

1 as 4 , 7r
E

�

3 3
r ea l ® 5767 2 V2

(

�

S

�

r (1 +E)

�

~2 +

�

+3 - - r r 2 S(1 - z )

6z ` z 1 - z®

�

-I

�

+

�

+z (1 - z )

�

'-21 (1 - z )~
E [ ( I - z ) +

�

z

~
+6[1 +z4+(1 - z )41

l og (1 - z )

�

- 6 1 - z+2z2+

�

z

�

.� (3 . 22)
1 - z

�

~+

�

( 1 - z )+

We mus t now compu t e t he v i r t ua l con t r i bu t i ons t o gg - - > H wh i ch a r e f ound f rom
t he d i agr ams o f f i g . 5 . To O ( a ' ) , t he coup l i ng o f t he H i ggs boson t o g l uons i n t he
M t o , n - > x l i m i t can be f ound by no t i ng t ha t t he H i ggs boson coup l es t o t he t r ace o f
t he ene rgy - - momen t um t ensor [4 , 14]* ,

ß (g , )

�

, ( )� (3 . 23)
2g ,

whe r e . sA i s t he sca l e cur r en t . The (1 + 8) t e rm a r i ses f rom a sub t l e t y i n t he use o f
t he l ow- ene rgy t heor em [2 , 15] . S i nce t he l s l i ggs coup l i ng t o ' , z , ~avy f e rm i ons i s

I t hank t l i c au t hor s o f ' r e f . 121 f or po i n t i ng ou t my om i ss i on o f ` t he ( I + 6) t e rm i n t he or i g i na l
ve r s i on c f ` t h i s pape r ,

‡ Since the top quark decouples in the EFT, the only effect of the mt renormalisation is encoded in the Wilson coefficient

̂σUV c.t.
1 = − 2 ̂σ0 αs

β0

ϵ
, β0 =

23
12π

̂σvirt
1 =

α3
s

576 π2v2 ( μ2

̂s )
ϵ

(−
3
ϵ2

−
3
ϵ

+ regular bits) δ(1 − z) + ̂σUV c.t.
1 δ(1 − z)

We use the conventions adopted in Nucl.Phys.B 359 (1991) 283-300. 

For NLO calculation in the full theory see Nucl.Phys.B 453 (1995) 17-82

Term due to renormalisation 
of  in the LO cross sectionαs

After UV renormalisation:


Double pole: soft AND collinear divergence 
Single pole: collinear (OR soft) divergence

Mathematica code available at this URL

https://gitlab.cern.ch/pimonni/summer-school-public-material
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๏  Real corrections receive contributions from  as well as new channels ( )


➡  is finite (no poles)


➡  is divergent


➡  is divergent

gg → gh gq → qh, qq̄ → gh

qq̄ → gh

gq → qh

gg → gh

  Real corrections

3 . 1 . THE SUBPROCESS qq - > gH

S. Dawson / H i ggs boson produc t i on

�

287

va l uab l e check o f t he comp l e t e t wo - l oop ca l cu l a t i on and shou l d i n pr i nc i p l e g i ve a
r e l i ab l e es t i ma t e o f t he s i ze o f t hese cor r ec t i ons i n t he r e l evan t k i nema t i c r eg i me .

A t t h i s po i n t i t i s i mpor t an t t o d i scuss t he sp i r i t o f t he ca l cu l a t i on . I f t he t op
qua r k i s ve r y heavy i t w i l l show up i nd i r ec t l y v i a i t s con t r i bu t i on t o r ad i a t i ve
cor r ec t i ons t o va r i ous quan t i t i es such as t he W and Z masses . I ndeed , a g l oba l f i t
t o ex i s t i ng da t a f rom e l ec t roweak processes r equ i r es M t op < 180 GeV f or t he
cons i s t ency o f t he s t anda rd mode l [7] . For t he i n t e rmed i a t e mass H i ggs boson , say
MH ~ 100 GeV , t he " W t op >> MH l i m i t may be a r easonab l e approx i ma t i on . For a
heavy H i ggs boson , such as MH ~ 1 TeV , t he M t op - -* l i m i t c l ea r l y i s no t va l i d . I n
t h i s case , our r esu l t s can be used t o gauge t he sens i t i v i t y o f t he H i ggs boson
produc t i on r a t e t o new phys i cs s i nce any new heavy qua r ks w i l l con t r i bu t e t o H i ggs
produc t i on f rom g l uon f us i on . For examp l e , a doub l e t o f heavy qua r ks wh i ch i s
degene r a t e i n mass wou l d no t con t r i bu t e t o t he p - pa r ame t e r , bu t wou l d con t r i bu t e
t o t he g l uon f us i on produc t i on o f a H i ggs boson .

3 . Rad i a t i ve cor r ec t i ons

The ma t r i x e l emen t squa r ed f or t he subprocess qq - - 3 - gH i n t he i n f i n i t e t op - qua r k
mass l i m i t i s eas i l y f ound f rom t he Feynman d i agr am o f f i g . 3 us i ng t he e f f ec t i ve
l agr ang i an o f eq . (2 . 6) ,

3

�

e

M(qq - + gH ) (2 _ 16

�

a S

�

1

�

4Tr

�

I ' (1 + E) (u2 + t 2 ) - E(u + t ) 2 ) .

�

(3 . 1)
9 Tru 2 s M2t op

S i nce t he c ross sec t i on f or t h i s process i s f i n i t e , i t i s s t r a i gh t f orwa rd t o i n t egr a t e
ove r t he phase space t o f i nd t he sp i n - and co l or - ave r aged c ross sec t i on ,

1

�

_«S

�

_ MH
~3

o , (qq - * gH ) = 486Tr 2 u2

(1

�

s

�

(3 . 2)

F i g . 3 . Feynman d i agr am f or t he subprocess qq - + gH . The do t r epr esen t s t he e f f ec t i ve ggH ve r t ex i n
t he i n f i n i t e t op - qua r k mass l i m i t .

290 S . Dawson / H i ggs boson produc t i on

F i g . 4 . Feynman d i agr ams con t r i bu t i ng t o t he subprocess gg - - > gH . The do t r epr esen t s t he e f f ec t i ve
g l uon - H i ggs coup l i ng i n t he i n f i n i t e t op - qua r k mass l i m i t .

The coe f f i c i en t o f t he l og ~ , 2 t e rm i n ô cou l d have been pr ed i c t ed by r enorma l -
i za t i on group a rgumen t s ,

3 . 3 . THE SUBPROCESS gg - H

a01( s )

�

- - as

�

1
dz ' u , g - H (ZPS)P (Z ' )

,

�

(3 . 14)
a l og M2

�

2Tr f o ¬q

To compu t e t he r ad i a t i ve cor r ec t i ons t o t he i nc l us i ve produc t i on o f t he H i ggs
boson f rom g l uon f us i on we need bo t h t he r ea l con t r i bu t i ons f rom gg - - > gH and
t he v i r t ua l l oop cor r ec t i ons f rom gg - > H . We be i ng w i t h t he r ea l con t r i bu t i on
wh i ch i s f ound f rom t he Feynman d i agr ams o f f i g . 4 . The ma t r i x e l emen t squa r ed
f or gg - > gH has been compu t ed by E l l i s e t a l . [12] and by H i nch l i f f e and Novaes
[13] i n t he E - - > 0 l i m i t . I t i s s i mp l es t t o compu t e t he amp l i t ude f or t he process

- 4
g A (p u ) +

gB(gv )
+ gc (p " ) ,

999) = S I (PA1q ' 1

�

r )+ . s~(p~ 9 pë , q~)

(3 . 15)

and t hen use c ross i ng t o ob t a i n t he amp l i t ude f or gg - - 3 , Hg . ABC(Avo , ) a r e t he
co l or (Lor en t z i nd i ces ) . The amp l i t ude can be wr i t t en

+x l (pc r , pA , 9 " ) + . s I (p f( , gv , pA) .

…̂σgq→qh
1 =

α3
s

1152 π2v2 ( μ2

̂s )
ϵ

(−z ̂Pgq(z)
1
ϵ

+ regular bits)

̂σgg→gh
1 =

α3
s

576 π2v2 ( μ2

̂s )
ϵ

(( 3
ϵ2

+
3
ϵ

+ regular bits) δ(1 − z) − z ̂Pgg(z)
1
ϵ

+ regular bits)
Singularities with a  cancel 

against the virtual corrections.


What happens to the remaining 
single poles??

δ(1 − z)

̂Pgq(z) = CF
1 + (1 − z)2

z

̂Pgg(z) = 2 CA ( z
(1 − z)+

+
1 − z

z
+ z(1 − z)) + 2π β0δ(1 − z)

We use the conventions adopted in Nucl.Phys.B 359 (1991) 283-300. 

For NLO calculation in the full theory see Nucl.Phys.B 453 (1995) 17-82

Mathematica code available at this URL

https://gitlab.cern.ch/pimonni/summer-school-public-material
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๏  Left-over singularity is related to our inability to sum over physical states (as required by the KLN 
theorem); a partonic initial state is unphysical.


➡ However, we can absorb the divergence into the bare PDFs (similarly to renormalisation). This procedure 
can be extended systematically to higher orders, leading to collinear factorisation‡


➡ Collinear divergences make PDFs evolve with  much like UV divergences make  evolve with .μ αs μ

  Collinear divergences & PDFs evolution 

‡ No rigorous proof of its validity is known in the most general case!

fi(z) = ∑
j

Γij(z) ⊗ fj(z, μ) , Γij(z) = δ(1 − z)δij +
αs(μ)
2π

̂Pij(z)
1
ϵ

+ 𝒪(α2
s )

dfi(z, μ)
d ln μ2

=
αs(μ)
2π

̂Pij(z) ⊗ fj(z, μ)

Structure of divergences leads to flavour 
mixing in DGLAP evolution, and predicts the 

evolution of the content of the proton!

Establishes our ability to predict the 
structure of ISR divergences order by 

order in perturbation theory



๏  Assembling all pieces we obtain the NLO cross section


➡ Very large correction due to new channels 
 opening at NLO 


➡ Unphysical scales provide  
 a handle on theory uncertainty  
 (gets smaller with higher orders)


➡ Commonly  (scale of the coupling) and 
  (scale of the PDFs) are varied independently  
 for a more conservative error estimate

μR
μF

σNLO = 34+17%
−13% pb

15

  The NLO cross section & scale uncertainty
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μ
mh

σ
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NLO

LO

K =
σNLO

σ0
∼ 2

μF = μR = μ , 1/2 ≤ μ/mh ≤ 2

Predictions here obtained with the ggHiggs public code

https://www.roma1.infn.it/~bonvini/higgs/
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๏  Assembling all pieces we obtain the NLO cross section
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  The NLO cross section & scale uncertainty
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μF = μR = μ , 1/2 ≤ μ/mh ≤ 2

NB: N3LO necessary for few-% 
control over perturbative error!

Predictions here obtained with the ggHiggs public code

NNLO

https://www.roma1.infn.it/~bonvini/higgs/


๏  Higgs XS Working Group recommendation:‡


➡ Besides the scale uncertainty, the  
 theory error also involves other sources
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  Other sources of theoretical uncertainty (gluon fusion)
TH uncertainty breakdown at N3LO (gluon fusion) 1901.00134 

Predictions from Anastasiou et al. 1602.00695 

30 I.4.1. The inclusive cross-section

where �LO
ex;t denotes the exact (hadronic) LO cross-section in the SM with a massive top quark and Nf =

5 massless quarks. Moreover, at LO and NLO we know the exact result for the production cross-section in
the SM, including all mass effects from top, bottom and charm quarks. We include these corrections into
our prediction via the terms ��̂(N)LO

ij,ex;t,b,c in eq. (I.4.1), consistently matched to the contributions from the
effective theory to avoid double counting. As a consequence, eq. (I.4.1) agrees with the exact SM cross-
section (with massless u, d and s quarks) through NLO in QCD. Beyond NLO, we only know the value
of the cross-section in the heavy-top effective theory. We can, however, include subleading corrections
at NNLO in the effective theory as an expansion in the inverse top mass [103–106]. These effects are
taken into account through the term �t�̂

NNLO
ij,EFT in eq. (I.4.1), with the factor RLO scaled out. They were

originally computed with the top mass at the OS scheme, but their scheme dependence is expected to
be at the sub-per mille level, following lower orders, and is hence considered negligible here. We also
include electroweak corrections to the gluon-fusion cross-section (normalized to the exact LO cross-
section) through the term ��̂ij,EW in eq. (I.4.1). Unlike QCD corrections, electroweak corrections have
only been computed through NLO in the electromagnetic coupling constant ↵ [107–109]. Moreover,
mixed QCD-electroweak corrections, i.e., corrections proportional to ↵ ↵3

s , are known in an effective
theory [110] valid in the limit where not only the top quark but also the electroweak bosons are much
heavier than the Higgs boson. In this limit the interaction of the Higgs boson with the W and Z bosons
is described via a point-like vertex coupling the gluons to the Higgs boson. Higher-order corrections
in this limit can thus be included into the Wilson coefficient in front of the dimension-five operator
describing the effective interaction of the gluons with the Higgs boson. The validity and limitations of
this approximation are discussed in Section I.4.1.a.iii.

I.4.1.a.ii Summary of results
The numerical results quoted in this section are valid for the following set of input parameters:

p
S 13 TeV

mh 125 GeV
PDF PDF4LHC15_nnlo_100

↵s(mZ) 0.118
mt(mt) 162.7 GeV (MS)
mb(mb) 4.18 GeV (MS)

mc(3GeV ) 0.986 GeV (MS)
µ = µR = µF 62.5 GeV (= mH/2)

Using these input parameters, our current best prediction for the production cross section of a
Higgs boson with a mass mH = 125 GeV at the LHC with a centre-of-mass energy of 13 TeV is

� = 48.58 pb+2.22 pb (+4.56%)
�3.27 pb (�6.72%) (theory) ± 1.56 pb (3.20%) (PDF+↵s) . (I.4.3)

The central value in eq. (I.4.3), computed at the central scale µF = µR = mH/2, is the combina-
tion of all the effects considered in eq. (I.4.1). The breakdown of the different effects is:

48.58 pb = 16.00 pb (+32.9%) (LO, rEFT)
+ 20.84 pb (+42.9%) (NLO, rEFT)
� 2.05 pb (�4.2%) ((t, b, c), exact NLO)
+ 9.56 pb (+19.7%) (NNLO, rEFT)
+ 0.34 pb (+0.7%) (NNLO, 1/mt)
+ 2.40 pb (+4.9%) (EW, QCD-EW)

+ 1.49 pb (+3.1%) (N3LO, rEFT)

(I.4.4)
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where rEFT denotes the cross section in the effective field theory approximation rescaled by RLO of
(I.4.2) . We note that the N3LO central value is completely insensitive to threshold resummation effects
for µF = µR = mH/2 and the central value obtained from a fixed-order N3LO computation and a
resummed computation at N3LO + N3LL are identical for this scale choice. We therefore conclude that
threshold resummation does not provide any improvement of the central value, and it is therefore not
included in our prediction.

The PDF and ↵s uncertainties are computed following the recommendation of the PDF4LHC
working group. The remaining theory-uncertainty in eq. (I.4.3) is obtained by adding linearly vari-
ous sources of theoretical uncertainty, which affect the different contributions to the cross section in
eq. (I.4.1). The breakdown of the different theoretical uncertainties whose linear sum produces the theo-
retical uncertainty in eq. (I.4.3) is

�(scale) �(trunc) �(PDF-TH) �(EW) �(t, b, c) �(1/mt)

+0.10 pb
�1.15 pb ±0.18 pb ±0.56 pb ±0.49 pb ±0.40 pb ±0.49 pb
+0.21%
�2.37% ±0.37% ±1.16% ±1% ±0.83% ±1%

In the remainder of this note we address each of the components that enter the final theoretical uncertainty
estimate in turn.

I.4.1.a.iii Breakdown of the theoretical uncertainties
Uncertainty from missing higher orders: �(scale)
The uncertainty �(scale) captures the impact of missing higher order terms in the perturbative expansion
of the cross section in the rEFT. We identify this uncertainty with the scale variation when varying the
renormalization and factorization scales simultaneously in the interval µF = µR 2 [mH/4, mH ]. The
N3LO corrections moderately increase (⇠ 3%) the cross-section for renormalization and factorization
scales equal to mH/2. In addition, they notably stabilize the scale variation, reducing it almost by a
factor of five compared to NNLO. The N3LO scale-variation band is included entirely within the NNLO
scale-variation band for scales in the interval [mH/4, mH ]. We note that, while we vary the scales
simultaneously, we have checked (see Figure 6 of [93]) that the factorization scale dependence is flat,
and the scale dependence at N3LO is driven by the renormalization scale dependence.

It is important to assess how well the scale uncertainty captures the uncertainty due to missing
higher orders in the perturbative expansion, given that it failed to capture the shift in the central value
due to missing perturbative orders at lower orders. We have found good evidence that the N3LO scale
variation captures the effects of missing higher perturbative orders in the EFT. We base this conclusion
on the following observations: First, we observe that expanding in ↵s separately the Wilson coefficient
and matrix-element factors in the cross-section gives results consistent with expanding directly their
product through N3LO. Second, a traditional threshold resummation in Mellin space up to N3LL did
not contribute significantly to the cross-section beyond N3LO in the range of scales µ 2 [mH/4, mH ].
Although the effects of threshold resummation are in general sensitive to ambiguities due to subleading
terms beyond the soft limit, we found that within our preferred range of scales, several variants of the
exponentiation formula gave very similar phenomenological results, which are always consistent with
fixed-order perturbation theory. Finally, a soft-gluon and ⇡2-resummation using the SCET formalism
also gave consistent results with fixed-order perturbation theory at N3LO. While ambiguities in sublead-
ing soft terms limit the use of soft-gluon resummation as an estimator of higher-order effects, and while
it is of course possible that some variant of resummation may yield larger corrections, it is encouraging
that this does not happen for the mainstream prescriptions studied here.

We conclude this discussion by commenting on the use of resummation to estimate the uncertainty
on the cross section. Based on the considerations from the previous paragraph, we are led to conclude

cf. chapter I.4 of 1610.07922

PDF uncertainty & 
parametric uncertainty in  αs

Estimate of uncertainty in the effect of finite quark 
masses beyond NLO. Now known up to NNLO

Estimate of impact of NLO mixed QCD-EW 
correction. Now known

Estimate of effect of missing 
N3LO PDFs (NNLO PDFs used here)

‡ Central scales μR = μF = mh/2
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  Back to our comparison to LHC data
๏  Inclusion of radiative corrections and other production channels leads to good agreement with data 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Differential collider Observables



๏  To ensure calculability in perturbation theory, we must guarantee the cancellation of IRC divergences  
 between real and virtual corrections. This imposes a criterion on observables known as IRC safety


➡ Two conditions on the observable   
 
 
 

𝒪(k1, k2, …, kn)

  Going more differential: IRC safety

𝒪(k1, …, ki−1, ki, ki+1, …, kn) →⏟
ki||ki+1

𝒪(k1, …, ki−1, ki + ki+1, …, kn)

𝒪(k1, …, ki−1, ki, ki+1, …, kn) →⏟
ki→0

𝒪(k1, …, ki−1, ki+1, …, kn)

Observable is insensitive to 
very soft emissions or very 

collinear splittings 
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Observable is insensitive to 
very soft emissions or very 

collinear splittings 

real corrn’s bin

The reals must end up in 
the same bin as the 

virtuals when radiation is 
soft and/or collinearvirt. corrn’s bin
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๏  Make it always customary to check whether an observable is IRC safe. Some examples:


➡ Is the energy of a quark/gluon/hadron IRC safe?


➡ Is the Higgs rapidity IRC safe?


➡ Is the transverse momentum of the Higgs boson IRC safe?


➡ Are jet observables IRC safe (e.g. leading-jet transverse momentum)? 


➡ […]

  Other IRC safe observables
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๏  Theoretically/experimentally precise: recoil of Higgs against radiation

  An example: The Higgs transverse momentum spectrum

⃗q T = ∑
i

⃗k t,i

⃗q T

⃗k t,1

⃗k t,n

…



๏  Spans wide range of momentum scales: sensitivity to a variety of effects in different regimes

23

  Why is it interesting?

HL-LHC projection 1902.00134

vs .

Low-qT regime can be exploited to infer 
indirect bounds on light-quark Yukawa 

couplings (e.g. charm quark)
High-qT (boosted) regime can be exploited to 

set bounds on couplings to top quark and 
gluon (e.g. heavy top partners)



๏  As for the total XS, we can compute the spectrum in the large-mt EFT and rescale by the ratio of the LO 
cross section in the full theory to the EFT one. We choose the following parametrisation for the kinematics

24

  Calculating the Higgs qT distribution at leading order

pμ
1 =

̂s
2

(1,0,0,1)

pμ
2 =

̂s
2

(1,0,0, − 1)

kμ = kt (cosh η,1,0, sinh η)

pμ
h = ( m2

h + q2
T cosh2 η, − qT,0, − qT sinh η)

p1 → ← p2

←
p

h

k
→

The relative azimuthal angle between the 
Higgs and the radiation can be integrated out 

exploiting Lorentz invariance

e.g. gg  gh (also other flavour channels 
contribute, as in the NLO total XS)

→
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-1
]

Full theory (w/ top loop)

Large-mt EFT  
(rescaled by ratio of LO cross sections)
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  Calculating the Higgs qT distribution at leading order Predictions here obtained with the H1Jet public code

dσ
dqT

=
qT

8π ∫
ηmax

−ηmax

dη∑
ij

|Mij |
2 ( ̂s, ̂t, ̂u, μR)
Eh ̂s3/2

ℒij ( ̂s
s

, μF)
̂s=(qT cosh η + m2

h + q2
T cosh2 η)

2

ηmax = ln
s − m2

h

2 sqT

+ ( s − m2
h

2 sqT )
2

− 1

Parton luminosity (as in total XS)

̂s = (p1 + p2)2

̂t = (p1 − k)2

̂u = (p2 − k)2

https://h1jet.hepforge.org/#:~:text=H1jet%20is%20a%20fast%20code,be%20extended%20to%20higher%20orders.
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  Large-qT regime: validity of heavy-top EFT 

Even when rescaled by the ratio of LO cross 
sections, the EFT approximation breaks 
down around the top threshold, due to 

sensitivity to particle content in the loop. 
 

This is an important observation: the tail of 
the qT distribution is sensitive to potential 

heavy new physics in the loop!

0 100 200 300 400

1.0

1.5

2.0

2.5

qT [GeV]

dσ
E
FT

dq
T

/d
σ S

M

dq
T

top threshold
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๏  The divergent structure of gauge theories in the IRC regime leaves behind a logarithmic sensitivity to  
 large hierarchies of scales


➡ Physical enhancement of configurations characterised by soft and/or collinear radiation

e.g. transverse momentum spectrum: LO 
distribution diverges as a logarithm of qT in 

the small-qT limit! Can we predict the 
structure of the divergence?

0 1 2 3 4
0.0

0.5

1.0

1.5

Log[qT /GeV]

q T σ0
dσ dq
T

LO distribution

logarithmic fit

  Low-qT regime: logarithmic divergences 



๏  In the logarithmic limits, QCD squared amplitudes factorise into lower-point squared amplitudes and  
 universal singular kernels (shown below at the lowest perturbative order)


๏  This factorisation allows for a systematic control of the logarithmic IRC divergences

28

…
… kμ

pμ
i

pμ
3

pμ
n

pμ
2

pμ
1

𝒜n+1𝒜†
n+1 ≃

⏟
kμ→0

− 4π μ2ϵαs

n

∑
i,j=1

pi ⋅ pj

pi ⋅ k pj ⋅ k
𝒜n(Ti ⋅ Tj)𝒜†

n

‡ Here we neglect spin correlations between the hard squared amplitude and the splitting kernel

Soft factorisation Collinear factorisation‡

pμ
i,a…

…pμ
i

pμ
3

pμ
n

pμ
2

pμ
1

pμ
i,b

  Recall soft/collinear factorisation of QCD squared amplitudes

𝒜n+1𝒜†
n+1 ≃

⏟
θab→0

8π
sab

μ2ϵαs Pai(z, ϵ) 𝒜n𝒜†
n



29

๏  The dominant singularity in the NLO qT spectrum arises when the radiation is simultaneously soft and 
collinear to the beam


➡ We can use a simple kinematic parametrisation to calculate the resulting phase space integral

  Calculating the leading divergence of the qT spectrum

Soft factorisation (previous slide), together with colour 
conservation  

predicts (set )
T1 ⋅ T2 = − T2

1 = − CA = − 3
ϵ = 0

|𝒜g(p1)g(p2)→g(k)h(ph) |
2 ≃

⏟
kμ→0

4π αsCA
p1 ⋅ p2

p1 ⋅ k p2 ⋅ k
|𝒜g(p1)g(p2)→h(ph) |

2

pμ
1 =

̂s
2

(1,0,0,1)

pμ
2 =

̂s
2

(1,0,0, − 1)

kμ = αk pμ
1 + βk pμ

2 + kμ
⊥ = kt (cosh η, cos ϕ, sin ϕ, sinh η)

dσDL

dqT
= σ0

αs

2π
4 CA ∫

̂s

0

dkt

kt ∫
ηmax

−ηmax

dη∫
π

−π

dϕ
2π

δ(qT − kt) = σ0
αs

2π
8 CA

ln
mh

qT

qT

kt = |k⊥ | |η | =
1
2

ln
αk

βk
≤ ln

̂s ≃ mh

kt
≡ ηmax

emission’s rapidity

p1 → ← p2

←
p

h

k
→
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๏  The pattern of the logarithmic divergences can be predicted using soft and collinear factorisation


➡ It’s convenient to work with the cumulative distribution ( )


➡ Problem: when  (e.g. ) we face a breakdown of the perturbative expansion!

L ≡ ln
mh

qT

qT ≪ mh L2 ∼ 1/αs

  Structure of logarithmic divergences

𝒪(αs) : αsL2 αsL αs

𝒪(α2
s ) : α2

s L4 α2
s L3 α2

s L2 α2
s L α2

s

𝒪(α2
3) : α3

s L6 α3
s L5 α3

s L4 α3
s L3 α3

s L2 α3
s L α3

s

𝒪(α2
n) : αn

s L2n αn
s L2n−1 αn

s L2n−2 ⋯ αn
s L αn

s

⋯

Cumulative distribution=XS for producing a 
Higgs boson with transverse momentum < qT 

σ(qT) = σ − ∫qT

dq′￼T
dσ
dq′￼T



๏  Convergence can be recast by reorganising the perturbative series across orders: resummation


➡ For instance, if we are interested in resumming the double-logarithmic (DL) tower of terms
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  Rescuing the predictive power of perturbative QCD: resummation

⋯

+

+

+

σ(qT) → σDL(qT) ≡ σ0 (1 +
∞

∑
n=1

cnαn
s L2n)

We now proceed to  

calculate 
dσDL

dqT

𝒪(αs) : αsL2 αsL αs

𝒪(α2
s ) : α2

s L4 α2
s L3 α2

s L2 α2
s L α2

s

𝒪(α2
3) : α3

s L6 α3
s L5 α3

s L4 α3
s L3 α3

s L2 α3
s L α3

s

𝒪(α2
n) : αn

s L2n αn
s L2n−1 αn

s L2n−2 ⋯ αn
s L αn

s

⋯

Cumulative distribution=XS for producing a 
Higgs boson with transverse momentum < qT 

σ(qT) = σ − ∫qT

dq′￼T
dσ
dq′￼T
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  Physical interpretation of resummation

ProtonProton

Z0

𝓁+ 𝓁-Summing the perturbative series corresponds to considering 
any number of (soft and/or collinear) emissions between the 
hard scale and the scale of the measurement (assuming it is 

in the perturbative regime)

ProtonProton

Z0

𝓁+ 𝓁-

Hard scattering 

Hadronisation 
(~ 1 GeV)

En
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  Physical interpretation of resummation

ProtonProton

Z0

𝓁+ 𝓁-Summing the perturbative series corresponds to considering 
any number of (soft and/or collinear) emissions between the 
hard scale and the scale of the measurement (assuming it is 

in the perturbative regime)

Hard scattering 

Hadronisation 
(~ 1 GeV)

En
er

gy



sc
al

e
M

ul
ti-

sc
al

e 



ev
ol

ut
io

n



33

DL resummation of Higgs qT
Mathematica code available at this URL

https://gitlab.cern.ch/pimonni/summer-school-public-material
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๏  The dominant (DL) divergence arises in the presence of any number of gluons simultaneously soft and 
collinear to the incoming partons


➡ At DL order we can then use the following approximation of the real emission squared amplitude 
(independent emissions picture)

  The multi-particle squared amplitude at tree-level

|𝒜g(p1)g(p2)→h(ph)+X |2 ≃ |𝒜g(p1)g(p2)→h(ph) |
2

∞

∑
n=0 (

n

∏
i=1

|ℳsc(ki) |2 )
1 + …

|ℳsc(ki) |2 = 4π αsCA
p1 ⋅ p2

p1 ⋅ ki p2 ⋅ ki

⃗q T = ∑
i

⃗k t,i

p1 → ← p2

This formula describes any number of 
soft/collinear independent emissions
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๏  In order to resum this series to all orders, we need to address the space integration


➡ multi-particle phase space is now constrained by the measurement


➡ We can recast the measurement as (Fourier transform)

  Factorisation of the measurement

dσDL, reals

d2 ⃗q T
= σ0

∞

∑
n=0

1
n! ∫ (

n

∏
i=1

[dki] |ℳsc(ki) |2 ) δ2( ⃗q T −
n

∑
i=1

⃗k t,i)

Combinatorial factor for n identical gluons

Phase space [dk] = kt dkt dη
dϕ

(2π)3

δ2( ⃗q T −
n

∑
i=1

⃗k t,i) = ∫
d2 ⃗b
(2π)2

e− ⃗b ⋅ ⃗q T

n

∏
i=1

e ⃗b ⋅ ⃗k t,i

We achieve the factorisation of the observable’s 
phase space.  is the impact parameter, small 

qT corresponds to large 
⃗b

b ≡ | ⃗b |
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๏  We are still missing the virtual corrections. At DL order, the finite parts of the virtual diagrams are not 
relevant, and we only need the IRC singularities to remove the divergences of the reals


➡ A simple prescription is to subtract, for each emission, a virtual term with the exact same weight (unitarity)


➡ We can now resum the DL series, noticing that it’s just a Taylor series of an exponential function


๏  Resummation restores the predictive power of perturbation theory, albeit with a different perturbative  
 expansion that captures towers of terms at all orders in αs

  DL resummation 

dσDL

d2 ⃗q T
= σ0 ∫

d2 ⃗b
(2π)2

e−i ⃗b ⋅ ⃗q T

∞

∑
n=0

1
n! ∫ (

n

∏
i=1

[dki] |ℳsc(ki) |2 (ei ⃗b ⋅ ⃗k t,i − 1))
azimuthal integration⏞⟶ dσDL

dqT
= σ0qT ∫

+∞

0
db b J0(bqT) e−R(b)

R(b) = ∫ [dk] |ℳsc(k) |2 (1 − ei ⃗b ⋅ ⃗k t) ≃
⏟

1
b ≪ mh

αs

2π
4CA ln2 b0

b mh
, b0 = 2e−γE

Virtual corrections
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  The Higgs qT distribution in DL approximation

0 20 40 60 80
0.000

0.005

0.010

0.015

0.020

0.025

qT [GeV]

1 σ 0

dσ dq
T

DL

LO

+∞

0

Sudakov peak: indication of DL exponential (Sudakov)  
suppression in the regime ⃗q T ≃ kt,1 ≫ kt,2 ≫ ⋯ ≫ kt,n

Scaling at very small qT is instead  
ruled by kinematic cancellations 

At high qT we want to 
combine the standard 

perturbative expansion at 
fixed order to achieve a 

reliable prediction across 
the whole spectrum 

(matching)
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0.01 0.05 0.10 0.50 1 5
0.000

0.002

0.004
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0.008

0.010

qT [GeV]

1 σ 0

dσ dq
T
2 dσ

dqT
scales as 𝒪(qT)

Power (linear) scaling at very small 
qT is a consequence of kinematic 

cancellations 
 

⃗q T = ∑ ⃗k t,i ≃ 0

  The Higgs qT distribution in DL approximation
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๏  The DL resummation we just performed can be extended to include additional towers of logarithmic 
corrections. The counting can be defined at the level of the logarithm of the cumulative distribution, i.e.


➡ Going beyond DL entails several aspects (hard-collinear limit, running coupling effects, DGLAP evolution 
of PDFs, higher-order corrections to splitting kernels, …)


➡ Field very mature, with many different formulations of the resummation (e.g. QCD, SCET, b-space/qT 
space, …)


➡ Rich phenomenology at the LHC

  Elements of higher order resummation for Higgs qT

ln σ(qT) ∼ αn
s Ln+1 (LL) + αn

s Ln (NLL) + αn
s Ln−1 (NNLL) + αn

s Ln−2 (N3LL) + ⋯

Current state of the 
art, also with 

elements of N4LL

NB: DL only corresponds to the 
n=1 term of the LL series!
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  Comparison to LHC experimental data
ATLAS 2207.08615 

Good description of data for different 
decay modes (state of the art is 

N3LL⊕NNLO). Experimental precision 
expected to reach the ~5% level (or 

better) at HL-LHC!
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๏  Large logarithms appear whenever a collider observable is sensitive to a hierarchy of scales (in the 
previous case ), different types of resummations can be formulated for different problems. E.g.


➡ Higgs total XS & rapidity distribution: sensitive to threshold logarithms 


➡ Light-quark mass effects (e.g. bottom quark) in Higgs XS and qT distribution:  
 sensitive to logarithms , with 


➡ Jet veto resummation when imposing a veto on additional jets produced with the Higgs boson:  
 sensitive to logarithms 


➡ … Many other examples for specific collider observables

qT ≪ mh

ln(1 − m2
h / ̂s)

ln(mq/mh) , ln(mq/qT) mq ≪ qT , mh

ln(pveto
t /mh)

  Other examples of resummations in Higgs physics


