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• The quest for new physics at the low-energy frontier

• How does the precision / intensity frontier work? (Theory perspective)

• An example from history:  the Standard Model itself!

• Effective field theory (EFT) framework 

• Standard Model EFT landscape in the LHC era and beyond 

• “Zoom in” on selected low-energy probes: illustrate methods and impact 

• Precision measurements:  

• Weak charged current processes (beta decays)

• Symmetry tests: 

• Lepton Number and Lepton Flavor Violation 

Flow of the lectures

Lecture 1
Lecture 2
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β decays in the SM and beyond

• In the SM,  W exchange  ⇒  only “V-A” + Cabibbo and lepton universality

Cabibbo-Kobayashi-Maskawa Lepton Flavor Universality (LFU)

Cabibbo Universality 
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β decays in the SM and beyond

• In the SM,  W exchange  ⇒  only “V-A” + Cabibbo and lepton universality

• New physics can spoil universality.  With current precision of 0.1-0.01% we can probe Λ > 10 TeV   

δVus/Vus ~ 0.2%  δVud/Vud ~ 0.02%  δVub/Vub ~ 5% 

~1.5 ⨉10-5~0.05 ~0..95 Re/μ = Γ (π→eν)/Γ(π→μν) 

Physics Case 1: Test LFUV at precision of theory
• Lepton Flavor Universality test in

This just demands to be tested better!  A clean generic way to look 
for new physics.    Theory vs Experiment in high precision test.

Will be (by far) the most precise test of Lepton Flavor Universality

15 x worse than theory
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Λ  
(> TeV)

E

Λχ 
 (~GeV)

vew , MW
Dim4 Dim6 Dim6

Bridging scales with EFT
To connect UV physics to hadronic decays, use multiple EFTs

BSM dynamics

SM-EFT operators

SU(3)c x SU(2)W x U(1)Y

W

1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2

cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by

W

d u

ν e

(a)

d u

ν e

(b)

Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.
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freedom. In the case at hand the effective theory is constructed by integrating out the W field

only. The matching procedure which gives the values of C1 and C2 proceeds in three steps

[61]. The explicit three steps presented below are sufficient for the subsequent summation of

the leading logarithms or equvalently for the leading term of the RG improved perturbation

theory. We will generalize these steps in the next section in order to be able to include also

the NLO term in this expansion.

Here we go:

Step 1: Calculation of Afull

The current-current diagrams of fig. 15 (a)–(c) and their symmetric counterparts, give for

the full amplitude Afull to O(αs) (mi = 0, p2 < 0):

Afull =
GF√

2
V ∗

csVud

[(

1 + 2CF
αs

4π
(
1

ε
+ ln

µ2

−p2
)

)

S2 +
3

N

αs

4π
ln

M2
W

−p2
S2

−3
αs

4π
ln

M2
W

−p2
S1

]
(5.23)

Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)

S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)

are just the tree level matrix elements of Q1 and Q2. A few comments should be made.

• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.

W

g

(a)

Wg

(b)

W g

(c)

Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.
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β decays in the SM and beyond

WR, H+,  
leptoquarks,  

Vector-Like quarks, 
Z’, SUSY,…

• In the SM,  mediated by W exchange  ⇒  only “V-A”;   Cabibbo universality;   lepton universality

…

kF, mπ

Vew/Λ
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cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by

W

d u

ν e

(a)

d u

ν e

(b)

Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.

1

W

1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2
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β decays in the SM and beyond

WR, H+,  
leptoquarks,  

Vector-Like quarks, 
Z’, SUSY,…

• In the SM,  mediated by W exchange  ⇒  only “V-A”;   Cabibbo universality;   lepton universality

…

kF, mπ

Vew/Λ

Eight SU(3)xSU(2)xU(1)-invariant dim 6 operators (up to flavor indices)  affect 
beta decays (3 vertex corrections and 5 four-fermion)
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1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)

Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q(1)
ud (ūpγµur)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q(1)
qu (q̄pγµqr)(ūsγµut)

Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)

Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [2]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.
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8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)
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(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
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6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of
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Qed (ēpγµer)(d̄sγµdt)

Q(1)
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where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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Qed (ēpγµer)(d̄sγµdt)

Q(1)
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Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)

Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [2]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.
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vew , MW
Dim4 Dim6 Dim6

Dim6 Dmi6

Bridging scales with EFT
To connect UV physics to hadronic decays, use multiple EFTs

BSM dynamics

SM-EFT operators

LEFT operators

SU(3)c x SU(2)W x U(1)Y

SU(3)c x U(1)EM

W

1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2

cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by

W

d u

ν e

(a)

d u

ν e

(b)

Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.
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1

freedom. In the case at hand the effective theory is constructed by integrating out the W field

only. The matching procedure which gives the values of C1 and C2 proceeds in three steps

[61]. The explicit three steps presented below are sufficient for the subsequent summation of

the leading logarithms or equvalently for the leading term of the RG improved perturbation

theory. We will generalize these steps in the next section in order to be able to include also

the NLO term in this expansion.

Here we go:

Step 1: Calculation of Afull

The current-current diagrams of fig. 15 (a)–(c) and their symmetric counterparts, give for

the full amplitude Afull to O(αs) (mi = 0, p2 < 0):

Afull =
GF√

2
V ∗

csVud

[(

1 + 2CF
αs

4π
(
1

ε
+ ln

µ2

−p2
)

)

S2 +
3

N

αs

4π
ln

M2
W

−p2
S2

−3
αs

4π
ln

M2
W

−p2
S1

]
(5.23)

Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)

S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)

are just the tree level matrix elements of Q1 and Q2. A few comments should be made.

• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.

W

g

(a)

Wg

(b)

W g

(c)

Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.
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cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by

W

d u

ν e

(a)

d u

ν e

(b)

Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.

1

freedom. In the case at hand the effective theory is constructed by integrating out the W field

only. The matching procedure which gives the values of C1 and C2 proceeds in three steps

[61]. The explicit three steps presented below are sufficient for the subsequent summation of

the leading logarithms or equvalently for the leading term of the RG improved perturbation

theory. We will generalize these steps in the next section in order to be able to include also

the NLO term in this expansion.

Here we go:

Step 1: Calculation of Afull

The current-current diagrams of fig. 15 (a)–(c) and their symmetric counterparts, give for

the full amplitude Afull to O(αs) (mi = 0, p2 < 0):

Afull =
GF√

2
V ∗

csVud

[(

1 + 2CF
αs

4π
(
1

ε
+ ln

µ2

−p2
)

)

S2 +
3

N

αs

4π
ln

M2
W

−p2
S2

−3
αs

4π
ln

M2
W

−p2
S1

]
(5.23)

Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)
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R = ēa�µ(1� �5)⌫b · ūi�
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S = ēa(1� �5)⌫b · ūidj
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R = ēa�µ(1� �5)⌫b · ūi�
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O
abij
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• Loop-level matching for SM operators (QED / QCD loops needed for precision)

SMEFT → LEFT matchingIntegrate out W,Z

• Match onto effective theory of light quarks, leptons, photon, gluon

• Operators in the EFT are invariant under U(1)EM and SU(3)C

• Tree-level matching:  
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• Tree-level matching for BSM operators determines εL,R,S,P,T

“Full” theory  (higher scale EFT) “Effective theory” (lower scale EFT) 
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• Loop-level matching for SM operators (QED / QCD loops needed for precision)

SMEFT → LEFT matchingIntegrate out W,Z

• Match onto effective theory of light quarks, leptons, photon, gluon
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Large log @ μ << MZ 



• At scale μ (process) < Λ (matching),  QED and QCD corrections to the Wilson coefficients can spoil perturbation theory

Renormalization Group “Running” (1) 

Mandatory to include these for SM 
operator (BSM effect < 1%) 

Include these for SM and BSM operators                            
(O(1) impact on extraction of BSM parameters) 

1 + #  αS/π Log (Λ/μ)

 @  μ~1GeV   

  ~1%   ~40%  

 QED    QCD  

  1 + #  α/π Log (Λ/μ)  

Λ~MZ Λ~MZ
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• At scale μ (process) < Λ (matching),  QED and QCD corrections to the Wilson coefficients can spoil perturbation theory

Renormalization Group “Running” (1) 

Mandatory to include these for SM 
operator (BSM effect < 1%) 
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 @  μ~1GeV   

  ~1%   ~40%  

 QED    QCD  

  1 + #  α/π Log (Λ/μ)  

Λ~MZ Λ~MZ

• Use RGEs to re-organize perturbation series.                                                    
Pert. theory expands “by rows”: NLO, N2LO, ...                          
RGE:  expands “by columns”: LL, NLL, ...

NLO

N2LO

N3LO

8
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With one-loop anomalous dimensions, 
sum the leading log (LL) series

• RG equations: 
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With one-loop anomalous dimensions, 
sum the leading log (LL) series

• RG equations: 

• For the V-A operator the anomalous dimension is known beyond one loop 

The finite O(↵) matching coe�cient depends on the scheme through B(a). We have used the Naive
Dimensional Regularization (NDR) scheme for �5 and kept track of the additional evanescent operator
scheme dependence via the parameter a, defined by [68–70]

�
↵
�
⇢
�
�PL ⌦ ���⇢�↵PL = 4 [1 + a (4� d)] �⇢PL ⌦ �⇢PL + E (a) , (13)

with an evanescent operator E(a) that has a vanishing matrix element in d = 4. Current conservation
protects C� from O(↵s) corrections. Concerning the terms of O(↵↵s), we only keep logarithmic contri-
butions, as the finite matching coe�cients and the corresponding three-loop anomalous dimensions are
not known.

The renormalized Wilson coe�cient Cr
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(a, µ) obeys the following RGE:
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2
f , (14d)

�se = +1 [36, 66, 71], (14e)

where ñ is the scale-dependent e↵ective number of fermions, ↵ (µ) and ↵s (µ) are the electromagnetic
and strong running coupling constants. We have obtained �

NDR
1 (a) by adapting the QCD calculation

in [68]. As far as we know, this is the first time the full two-loop anomalous dimension is worked out.2

With appropriate rescalings of the QCD diagrams of Ref. [68], we also reproduce �se = 1. �0 and �se

are scheme-independent. The scheme independence of �se follows from the general argument given in
Ref. [72], combined with the fact that there is no finite matching term nor anomalous dimension to O(↵s)
for the operator under study here. On the other hand, �1 depends on both the treatment of �5 in d

spacetime dimensions and on the scheme used for evanescent operators.
In our final result, we will use the numerical solution for C

r

�
(a, µ). However, it is quite instructive

to provide an approximate analytic solution, based on the perturbative treatment of the next-to-leading
logarithm (NLL) terms associated with the scheme-dependent two-loop anomalous dimension �1(a) =
O(↵2) and the finite one-loop matching condition B(a). First, setting �1(a) ! 0 and consistently taking
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where we have subsequently integrated out the b quark, ⌧ lepton, and c quark, and the strong and
electromagnetic running couplings are obtained by solving the one-loop RGEs. This solution resums all
the terms of O(↵n lnn(µSM/µ)) and O(↵↵n

s ln
n(µSM/µ)). We can then perturbatively include the e↵ects

of O(↵2 ln(µSM/µ)) due to �1(a) and B(a), arriving at
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Ref. [38] quotes the ñ-enhanced component of �1. Taking into account the di↵erent normalization, Ref. [38] obtains

�NDR
1 (a = �1) = �(1/16)⇥ (44/9)ñ+O(ñ0

), while we find �NDR
1 (a = �1) = �(1/16)⇥ (8/9)ñ for the total.
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8

The finite O(↵) matching coe�cient depends on the scheme through B(a). We have used the Naive
Dimensional Regularization (NDR) scheme for �5 and kept track of the additional evanescent operator
scheme dependence via the parameter a, defined by [68–70]

�
↵
�
⇢
�
�PL ⌦ ���⇢�↵PL = 4 [1 + a (4� d)] �⇢PL ⌦ �⇢PL + E (a) , (13)

with an evanescent operator E(a) that has a vanishing matrix element in d = 4. Current conservation
protects C� from O(↵s) corrections. Concerning the terms of O(↵↵s), we only keep logarithmic contri-
butions, as the finite matching coe�cients and the corresponding three-loop anomalous dimensions are
not known.

The renormalized Wilson coe�cient Cr

�
(a, µ) obeys the following RGE:

µ
dCr

�
(a, µ)

dµ
= �(↵,↵s) C

r

� (a, µ) , (14a)

�(↵,↵s) = �0
↵

⇡
+ �1

⇣
↵

⇡

⌘2
+ �se

↵

⇡

↵s

4⇡
+ · · · , (14b)

�0 = �1 [36], (14c)

�
NDR

1 (a) =
ñ

18
(2a+ 1) , ñ =
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Ref. [38] quotes the ñ-enhanced component of �1. Taking into account the di↵erent normalization, Ref. [38] obtains

�NDR
1 (a = �1) = �(1/16)⇥ (44/9)ñ+O(ñ0

), while we find �NDR
1 (a = �1) = �(1/16)⇥ (8/9)ñ for the total.
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and strong running coupling constants. We have obtained �
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1 (a) by adapting the QCD calculation
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are scheme-independent. The scheme independence of �se follows from the general argument given in
Ref. [72], combined with the fact that there is no finite matching term nor anomalous dimension to O(↵s)
for the operator under study here. On the other hand, �1 depends on both the treatment of �5 in d
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In our final result, we will use the numerical solution for C
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logarithm (NLL) terms associated with the scheme-dependent two-loop anomalous dimension �1(a) =
O(↵2) and the finite one-loop matching condition B(a). First, setting �1(a) ! 0 and consistently taking
as an initial condition C
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where we have subsequently integrated out the b quark, ⌧ lepton, and c quark, and the strong and
electromagnetic running couplings are obtained by solving the one-loop RGEs. This solution resums all
the terms of O(↵n lnn(µSM/µ)) and O(↵↵n

s ln
n(µSM/µ)). We can then perturbatively include the e↵ects
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Ref. [38] quotes the ñ-enhanced component of �1. Taking into account the di↵erent normalization, Ref. [38] obtains
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1 (a = �1) = �(1/16)⇥ (44/9)ñ+O(ñ0

), while we find �NDR
1 (a = �1) = �(1/16)⇥ (8/9)ñ for the total.
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Solution gives LL~ (ɑ ln(Mw/μ))n  

and NLL~ ɑ (ɑS ln(Mw//μ))n ,                       
ɑ (ɑ ln(Mw/μ))n              
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X

f

nfQ
2
f , (14d)

�se = +1 [36, 66, 71], (14e)
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the terms of O(↵n lnn(µSM/µ)) and O(↵↵n
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1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2

cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by

W

d u

ν e

(a)

d u

ν e

(b)

Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.
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freedom. In the case at hand the effective theory is constructed by integrating out the W field

only. The matching procedure which gives the values of C1 and C2 proceeds in three steps

[61]. The explicit three steps presented below are sufficient for the subsequent summation of

the leading logarithms or equvalently for the leading term of the RG improved perturbation

theory. We will generalize these steps in the next section in order to be able to include also

the NLO term in this expansion.

Here we go:

Step 1: Calculation of Afull

The current-current diagrams of fig. 15 (a)–(c) and their symmetric counterparts, give for

the full amplitude Afull to O(αs) (mi = 0, p2 < 0):

Afull =
GF√

2
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(5.23)

Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)

S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)

are just the tree level matrix elements of Q1 and Q2. A few comments should be made.

• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.

W

g

(a)

Wg

(b)

W g

(c)

Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.
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R = ēa�µ(1� �5)⌫b · ūi�
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effective weak Hamiltonian which has the following generic structure
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Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2

cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by
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Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.
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freedom. In the case at hand the effective theory is constructed by integrating out the W field

only. The matching procedure which gives the values of C1 and C2 proceeds in three steps

[61]. The explicit three steps presented below are sufficient for the subsequent summation of

the leading logarithms or equvalently for the leading term of the RG improved perturbation

theory. We will generalize these steps in the next section in order to be able to include also

the NLO term in this expansion.

Here we go:

Step 1: Calculation of Afull

The current-current diagrams of fig. 15 (a)–(c) and their symmetric counterparts, give for

the full amplitude Afull to O(αs) (mi = 0, p2 < 0):
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Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)

S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)

are just the tree level matrix elements of Q1 and Q2. A few comments should be made.

• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.
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Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.
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masses to zero. As we will see below this choice has no impact on the coefficients Ci.
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S = ēa(1� �5)⌫b · ūidj
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P = ēa(1� �5)⌫b · ūi�5dj
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Goldstone bosons 
of Chiral SB

• Degrees of freedom: mesons and nucleons

• Symmetries: Lorentz (or Galileo) + symmetries of 
QCD (in particular chiral symmetry)  and LEFT  

• Power counting:  expansion in energy over scale of 
QCD resonances (~GeV)
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Bridging scales with EFT
To connect UV physics to hadronic decays, use multiple EFTs

Non-perturbative matching: input from Lattice QCD, dispersion theory, … 

BSM dynamics

SM-EFT operators

LEFT operators

Chiral EFT (N,π, K…)

Pion-less EFT and Hnucl

SU(3)c x SU(2)W x U(1)Y

SU(3)c x U(1)EM

W

1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2

cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by

W

d u

ν e

(a)

d u

ν e

(b)

Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.
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freedom. In the case at hand the effective theory is constructed by integrating out the W field

only. The matching procedure which gives the values of C1 and C2 proceeds in three steps

[61]. The explicit three steps presented below are sufficient for the subsequent summation of

the leading logarithms or equvalently for the leading term of the RG improved perturbation

theory. We will generalize these steps in the next section in order to be able to include also

the NLO term in this expansion.

Here we go:

Step 1: Calculation of Afull

The current-current diagrams of fig. 15 (a)–(c) and their symmetric counterparts, give for

the full amplitude Afull to O(αs) (mi = 0, p2 < 0):

Afull =
GF√

2
V ∗

csVud

[(

1 + 2CF
αs

4π
(
1

ε
+ ln

µ2

−p2
)

)

S2 +
3

N

αs

4π
ln

M2
W

−p2
S2

−3
αs

4π
ln

M2
W

−p2
S1

]
(5.23)

Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)

S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)

are just the tree level matrix elements of Q1 and Q2. A few comments should be made.

• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.

W

g

(a)

Wg

(b)

W g

(c)

Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.

56

γW

1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2
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µ⌫(1� �5)dj
Oabcd
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µ(1��5)dj

1

Goldstone bosons 
of Chiral SB

Test
Test
Test
Test
Test
Test

L/⇡

HNuclear +Hweak +HEM

L� = L⇡,K,⌘ + L⇡N + LNN + ...

LLEFT = LFermi �
GFVuidj

p
2

X

n

✏nOn + LQCD+QED

Oabij
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To a given order, loops + LECs (determined by experiment, 
LQCD, dispersive methods, models…)

4

a) b) c) d)

f) g) h) i)

e)

j)

FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�). Single, double, wavy and dashed lines
denote, respectively, leptons, nucleons, photons and pions. Dots denote interactions from the lowest order chiral Lagrangians

L
p2
⇡ and L

p
⇡N , while diamonds on a pion line represent insertions of Le2p0

⇡ .

FIG. 2: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏�). Circled dots denote interactions from the

NLO chiral Lagrangian L
p2

⇡N , while diamonds on a nucleon line represent insertions of Le2p0

⇡N . All other notation is as in Fig. 1.

Numerical impact — We now estimate the numerical

impact of the various corrections beginning with �(0,1)
em .

Existing lattice data indicate that gA has a mild m⇡ de-

pendence [10], and we set g
(0)

A = gA = 1.27. Using the
physical masses of charged and neutral pions, the average
nucleon mass mN = 938.9 MeV, and F⇡ = 92.4 MeV, we
obtain Z⇡ = 0.81. The NLO LECs c3 and c4 have been
extracted from pion-nucleon scattering [31, 32]. They
show a sizable dependence on the chiral order at which
the fit to ⇡-N data is carried out (stabilizing between
N2LO and N3LO). In an EFT without explicit � degrees
of freedom, they are dominated by virtual � contribu-
tions and thus anomalously large. We then obtain

c3|NLO
= �3.61(5)GeV�1

, c4|NLO
= 2.17(3)GeV�1

c3|N2LO
= �5.39(5)GeV�1

, c4|N2LO
= 3, 62(3)GeV�1

.

c3|N3LO
= �5.67(6)GeV�1

, c4|N3LO
= 4.35(4)GeV�1

.

(12)

With this input, we obtain
↵

2⇡
�(0)

em
2 {0.25, 0.65} · 10�2

, (13)

↵

2⇡
�(1)

em
2 {1.15, 1.85} · 10�2

, (14)

↵

2⇡
�(1)

em
= {1.15, 1, 70, 1.85} · 10�2

, (15)

where the range in �(0)

em is obtained by setting Ĉ⇡(µ) = 0
and varying µ between mN/2 and mN . The range in

�(1)

em by taking NLO or N3LO extractions of c3,4 [32] (the
N2LO results would give 1.7 · 10�2). While the NLO
correction is somewhat larger than the LO correction,
we stress that this is not the full correction because of
the counter term contribution Ĉ⇡. Combining LO and
NLO corrections, we estimate a correction to gA at the
percent level

�gA/g
(0)

A =
↵

2⇡
�(0+1)

em
2 {1.4, 2.5} · 10�2

. (16)

This shift due to isospin breaking has no impact on the
current first-row CKM discrepancy as the most accurate
determination of gA is extracted from experiments, where
these corrections are automatically included. comment
on future work on isospin-breaking nuclear corrections?
The correction does have a big impact on first-principle
lattice-QCD computations of neutron � decay. Present
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NLO

FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�) (upper panel) and O(✏�) (lower panel).
Single, double, wavy, and dashed lines denote, respectively, leptons, nucleons, photons, and pions. Dots refer to interactions

from the lowest-order chiral Lagrangians L
p2
⇡ and L

p
⇡N , while diamonds represent insertions of L

e2p0
⇡ . Circled dots denote

interactions from the NLO chiral Lagrangian L
p2

⇡N .

only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]

� = g
QCD

A

⇣
1 + �

(�)
RC

� 2Re(✏R)
⌘
, (12)

where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is

�
(�)
RC

=
↵

2⇡

⇣
�(0)

A,em +�(1)

A,em ��(0)

V em

⌘
. (13)

For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (14)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (15)

This shift has no impact on the current first-row CKM
discrepancy because the most accurate determination
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Descotes and Moussallam ‘05  
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+ … 

 Xn, Kn  O(e2 p2) vertices   

ΔEM to O(e2p2)

O(p2) vertices 

 Formal matching in terms of quark currents correlators

 Saturate ΠQCD (Q
2) with resonance interpolators (~ large NC)

 Matching result consistent with naïve dimensional analysis:

103 X1: 0 ± 6.7 →  -3.7            103 X6
phys

 : 16 ± 8 →  10.4
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FIG. 3: Lowest-order diagrams contributing to the EW potentials V
0
E , Vme , and V

0. Single, double, and dashed lines denote
leptons, nucleons, and pions, respectively. Dots and circled dots refer to interactions from the LO and NLO chiral Lagrangians,
diamonds to isospin-breaking interactions.

V
mag

0
(q) =

X

j<k

e2

3

gA
mN

1

q2

✓
�(j)

· �(k) +
1

2
S(jk)

◆h
(1 + p)⌧

+(j)P (k)
p + n⌧

+(j)P (k)
n + (j $ k)

i
, (34)

V
rec

0
(q,P) =

X

j<k


� i

e2gA
4mN

⌧+(j)P (k)
p

q4
((Pj �Pk)⇥ q) · �(j)

�
Z⇡e2g2A
mN

⌧+(j)⌧ (k)
3

(q2 +M2
⇡)

2
�(j)

· q�(k)
·Pj + (j $ k)

�
, (35)

where p = 1.79, n = �1.91 are the proton and neutron
anomalous magnetic moments. The coordinate-space ex-
pression of Eqs. (34) and (35) is given in Sec. VI and
App. B. Vmag

0
has a Coulombic scaling, ' 1/q2, with an

isospin-one/-two component proportional to (1+p)±n,
respectively. In momentum space this class of poten-
tials scales as O(e2/(k2F⇤�)) and contributes to �NS at
O(↵✏�).

When applied to 1S0 wave functions obtained at LO
in chiral EFT, the Coulomb-like potential in Eq. (34)
gives rise to nuclear matrix elements that are logarith-
mically dependent on the ultraviolet (UV) cuto↵ used in
the solution of the Lippmann–Schwinger or Schrödinger
equation [55, 56]. This signals sensitivity to UV physics,
related to the exchange of hard photons with virtual mo-
menta larger than ⇤�, which can be absorbed by the 2b
short-range operators in Eq. (13). To properly renor-
malize nuclear matrix elements, gNN

V 1,V 2
need to scale as

O(1/(F 2
⇡⇤�)). Their contribution to the e↵ective Hamil-
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V
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3
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⇤
.

(37)
Following essentially the same steps discussed in

Refs. [55, 56] we can derive the cuto↵ dependence of
gNN
V 1,V 2

. First, we introduce the dimensionless couplings

g̃NN
V 1,V 2

as

gNN
V 1,V 2

=
1

mN

✓
mNC1S0

4⇡

◆2

g̃NN
V 1,V 2

, (38)

where C1S0
= 3CT � CS is the LO NN contact interac-

tion in the 1S0 channel. At LO in chiral EFT, the RG
equations for g̃NN

V 1,V 2
are the same in dimensional regu-

larization and several cuto↵ schemes [56] and are given
by

dg̃NN
V 1

d logµ
= �gA(1 + p + n) = �1.12,

dg̃NN
V 2

d logµ
= �gA(1 + p � n) = �5.99, (39)

where µ denotes the renormalization scale in the MS or
power-divergence-subtraction schemes, or the UV cuto↵
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1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2

cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by

W

d u

ν e

(a)

d u

ν e

(b)

Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.

1

1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2
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freedom. In the case at hand the effective theory is constructed by integrating out the W field

only. The matching procedure which gives the values of C1 and C2 proceeds in three steps

[61]. The explicit three steps presented below are sufficient for the subsequent summation of

the leading logarithms or equvalently for the leading term of the RG improved perturbation

theory. We will generalize these steps in the next section in order to be able to include also

the NLO term in this expansion.

Here we go:

Step 1: Calculation of Afull

The current-current diagrams of fig. 15 (a)–(c) and their symmetric counterparts, give for

the full amplitude Afull to O(αs) (mi = 0, p2 < 0):

Afull =
GF√

2
V ∗

csVud

[(

1 + 2CF
αs

4π
(
1

ε
+ ln

µ2

−p2
)

)

S2 +
3

N

αs

4π
ln

M2
W

−p2
S2

−3
αs

4π
ln

M2
W

−p2
S1

]
(5.23)

Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)

S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)

are just the tree level matrix elements of Q1 and Q2. A few comments should be made.

• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.

W

g

(a)

Wg

(b)

W g

(c)

Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.
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cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by

W

d u

ν e

(a)

d u

ν e

(b)

Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.

1

freedom. In the case at hand the effective theory is constructed by integrating out the W field

only. The matching procedure which gives the values of C1 and C2 proceeds in three steps

[61]. The explicit three steps presented below are sufficient for the subsequent summation of

the leading logarithms or equvalently for the leading term of the RG improved perturbation

theory. We will generalize these steps in the next section in order to be able to include also

the NLO term in this expansion.

Here we go:

Step 1: Calculation of Afull

The current-current diagrams of fig. 15 (a)–(c) and their symmetric counterparts, give for

the full amplitude Afull to O(αs) (mi = 0, p2 < 0):

Afull =
GF√

2
V ∗

csVud

[(

1 + 2CF
αs

4π
(
1

ε
+ ln

µ2

−p2
)

)

S2 +
3

N

αs

4π
ln

M2
W

−p2
S2

−3
αs

4π
ln

M2
W

−p2
S1

]
(5.23)

Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)
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O
abij
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lept = ēa�µ(1� �5)⌫b · ⌫̄c�

µ(1� �5)ed

LFermi = �
GF
p
2
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µ(1 + �5)dj

Oabij
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Oabij
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f) g) h) i)
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j)

FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�). Single, double, wavy and dashed lines
denote, respectively, leptons, nucleons, photons and pions. Dots denote interactions from the lowest order chiral Lagrangians

L
p2
⇡ and L

p
⇡N , while diamonds on a pion line represent insertions of Le2p0

⇡ .

FIG. 2: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏�). Circled dots denote interactions from the

NLO chiral Lagrangian L
p2

⇡N , while diamonds on a nucleon line represent insertions of Le2p0

⇡N . All other notation is as in Fig. 1.

Numerical impact — We now estimate the numerical

impact of the various corrections beginning with �(0,1)
em .

Existing lattice data indicate that gA has a mild m⇡ de-

pendence [10], and we set g
(0)

A = gA = 1.27. Using the
physical masses of charged and neutral pions, the average
nucleon mass mN = 938.9 MeV, and F⇡ = 92.4 MeV, we
obtain Z⇡ = 0.81. The NLO LECs c3 and c4 have been
extracted from pion-nucleon scattering [31, 32]. They
show a sizable dependence on the chiral order at which
the fit to ⇡-N data is carried out (stabilizing between
N2LO and N3LO). In an EFT without explicit � degrees
of freedom, they are dominated by virtual � contribu-
tions and thus anomalously large. We then obtain

c3|NLO
= �3.61(5)GeV�1

, c4|NLO
= 2.17(3)GeV�1

c3|N2LO
= �5.39(5)GeV�1

, c4|N2LO
= 3, 62(3)GeV�1

.

c3|N3LO
= �5.67(6)GeV�1

, c4|N3LO
= 4.35(4)GeV�1

.

(12)

With this input, we obtain
↵

2⇡
�(0)

em
2 {0.25, 0.65} · 10�2

, (13)

↵

2⇡
�(1)

em
2 {1.15, 1.85} · 10�2

, (14)

↵

2⇡
�(1)

em
= {1.15, 1, 70, 1.85} · 10�2

, (15)

where the range in �(0)

em is obtained by setting Ĉ⇡(µ) = 0
and varying µ between mN/2 and mN . The range in

�(1)

em by taking NLO or N3LO extractions of c3,4 [32] (the
N2LO results would give 1.7 · 10�2). While the NLO
correction is somewhat larger than the LO correction,
we stress that this is not the full correction because of
the counter term contribution Ĉ⇡. Combining LO and
NLO corrections, we estimate a correction to gA at the
percent level

�gA/g
(0)

A =
↵

2⇡
�(0+1)

em
2 {1.4, 2.5} · 10�2

. (16)

This shift due to isospin breaking has no impact on the
current first-row CKM discrepancy as the most accurate
determination of gA is extracted from experiments, where
these corrections are automatically included. comment
on future work on isospin-breaking nuclear corrections?
The correction does have a big impact on first-principle
lattice-QCD computations of neutron � decay. Present

4
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FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�) (upper panel) and O(✏�) (lower panel).
Single, double, wavy, and dashed lines denote, respectively, leptons, nucleons, photons, and pions. Dots refer to interactions

from the lowest-order chiral Lagrangians L
p2
⇡ and L

p
⇡N , while diamonds represent insertions of L

e2p0
⇡ . Circled dots denote

interactions from the NLO chiral Lagrangian L
p2

⇡N .

only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]

� = g
QCD

A

⇣
1 + �

(�)
RC

� 2Re(✏R)
⌘
, (12)

where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is

�
(�)
RC

=
↵

2⇡

⇣
�(0)

A,em +�(1)

A,em ��(0)

V em

⌘
. (13)

For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (14)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (15)

This shift has no impact on the current first-row CKM
discrepancy because the most accurate determination
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FIG. 3: Lowest-order diagrams contributing to the EW potentials V
0
E , Vme , and V

0. Single, double, and dashed lines denote
leptons, nucleons, and pions, respectively. Dots and circled dots refer to interactions from the LO and NLO chiral Lagrangians,
diamonds to isospin-breaking interactions.

V
mag

0
(q) =

X

j<k

e2

3

gA
mN

1

q2

✓
�(j)

· �(k) +
1

2
S(jk)

◆h
(1 + p)⌧

+(j)P (k)
p + n⌧

+(j)P (k)
n + (j $ k)

i
, (34)

V
rec

0
(q,P) =

X

j<k


� i

e2gA
4mN

⌧+(j)P (k)
p

q4
((Pj �Pk)⇥ q) · �(j)

�
Z⇡e2g2A
mN

⌧+(j)⌧ (k)
3

(q2 +M2
⇡)

2
�(j)

· q�(k)
·Pj + (j $ k)

�
, (35)

where p = 1.79, n = �1.91 are the proton and neutron
anomalous magnetic moments. The coordinate-space ex-
pression of Eqs. (34) and (35) is given in Sec. VI and
App. B. Vmag

0
has a Coulombic scaling, ' 1/q2, with an

isospin-one/-two component proportional to (1+p)±n,
respectively. In momentum space this class of poten-
tials scales as O(e2/(k2F⇤�)) and contributes to �NS at
O(↵✏�).

When applied to 1S0 wave functions obtained at LO
in chiral EFT, the Coulomb-like potential in Eq. (34)
gives rise to nuclear matrix elements that are logarith-
mically dependent on the ultraviolet (UV) cuto↵ used in
the solution of the Lippmann–Schwinger or Schrödinger
equation [55, 56]. This signals sensitivity to UV physics,
related to the exchange of hard photons with virtual mo-
menta larger than ⇤�, which can be absorbed by the 2b
short-range operators in Eq. (13). To properly renor-
malize nuclear matrix elements, gNN

V 1,V 2
need to scale as

O(1/(F 2
⇡⇤�)). Their contribution to the e↵ective Hamil-

tonian is

V
CT

0
= e2

�
gNN
V 1

O1 + gNN
V 2

O2

�
, (36)

where

O1 =
X

j 6=k

⌧+(j)1k, O2 =
X

j<k

⇥
⌧+(j)⌧ (k)

3
+ (j $ k)

⇤
.

(37)
Following essentially the same steps discussed in

Refs. [55, 56] we can derive the cuto↵ dependence of
gNN
V 1,V 2

. First, we introduce the dimensionless couplings

g̃NN
V 1,V 2

as

gNN
V 1,V 2

=
1

mN

✓
mNC1S0

4⇡

◆2

g̃NN
V 1,V 2

, (38)

where C1S0
= 3CT � CS is the LO NN contact interac-

tion in the 1S0 channel. At LO in chiral EFT, the RG
equations for g̃NN

V 1,V 2
are the same in dimensional regu-

larization and several cuto↵ schemes [56] and are given
by

dg̃NN
V 1

d logµ
= �gA(1 + p + n) = �1.12,

dg̃NN
V 2

d logµ
= �gA(1 + p � n) = �5.99, (39)

where µ denotes the renormalization scale in the MS or
power-divergence-subtraction schemes, or the UV cuto↵
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Probing LFU with Re/μ(π)

⇒  π+ 

e+

⇒

νe  
• Re/μ = Γ (π→eν)/Γ(π→μν) helicity 

suppressed the SM (V-A),  zero if me→ 0

• σexp~15σth ⇒ pristine LFU test possible 

VC-Rosell  0707.3439

PIENU Coll. 

Physics Case 1: Test LFUV at precision of theory
• Lepton Flavor Universality test in

This just demands to be tested better!  A clean generic way to look 
for new physics.    Theory vs Experiment in high precision test.

Will be (by far) the most precise test of Lepton Flavor Universality

15 x worse than theory

4

Current Expt. Avg.

SM Theory

Goal of PIONEER

exp 4
/

exp
/

Current Result (PDG):  R (1.2327 0.0023) 10  ( 0.19%)

( 0.09%

)

0.9990 0.0009

PEN, PIENU goals ( R

)

0.1%

e

e

e

x

g
g

m

m

m

 

 



 

(dominated by PIENU expt.)

• Result known to O(αQ4), with 

• Many uncertainties cancel in the ratio

O(p4) LECs
fixed by charge radii 

and π → l ν γ π
e

ν

γ

the charged current. Moreover, their ratios can be calculated with extraordinary precision at the
10−4 level (45–48) because, to a first approximation, the strong interaction dynamics cancel out
in the ratio RPe/µ and the hadronic structure dependence appears only through EW corrections.
Because of these features and the precise experimental measurements, the ratios RPe/µ are very
sensitive probes of all SM extensions that induce nonuniversal corrections to Wℓν couplings as
well as ēνūd and ēνūs operators, in particular, if they generate a pseudoscalar current or induced
scalar current (49).

Themost recent theoretical calculations of RPe/µ (47, 48) are based on chiral perturbation theory
(ChPT), the low energy effective field theory (EFT) of QCD (50–52), generalized to include
virtual photons and light charged leptons (53). This framework provides a controlled expansion
of the decay rates in terms of a power counting scheme characterized by the dimensionless ratio
Q ∼ mπ , K, µ/$χ , where $χ ∼ 4πFπ ∼ 1.2 GeV (Fπ ≃ 92.4 MeV is the π decay constant), and the
electromagnetic coupling e. In this setup, one can write

RPe/µ = R̄Pe/µ

[

1 + &P
e2Q0 + &P

e2Q2 + &P
e2Q4 + · · · + &P

e4Q0+ · · ·
]

, 2.

where

R̄Pe/µ = m2
e

m2
µ

(
m2
P −m2

e

m2
P −m2

µ

)2

. 3.

Here we have kept all the terms needed to reach an uncertainty of∼10−4 for the ratio.The leading
electromagnetic corrections &P

e2Q0 correspond to the pointlike approximation for πs and Ks, and
their expressions are well known (54). The hadronic structure dependence first appears through
the correction &P

e2Q2 ∼ (α/π )(mP/$χ )2, which features both the calculable double-chiral loga-
rithms and an a priori unknown low energy coupling constant, which was estimated in large-NC

QCD (where NC is the number of colors) (47, 48) and found to contribute negligibly to the error
budget.

2.1.1. Pion decays. In the π case (P = π±), one usually defines the ratio to be fully photon
inclusive, such that it is infrared safe. As a consequence, one has to include in RPe/µ terms arising
from the structure-dependent contribution to π → ℓν̄ℓγ (55), which are formally of O(e2Q4) but
are not helicity suppressed and behave as &P

e2Q4 ∼ (α/π ) (mP/$χ )4 (mP/me )2. Finally, at the level
of uncertainty considered, one needs to include higher-order corrections in α, namely &P

e4Q0 . The
leading logarithmic correction &P

e4Q0,LL = (7/2)(α/π logmµ/me )2 was calculated in Reference 45,
and the effect of subleading contributions was estimated in Reference 47 as (α/π )2 logmµ/me ∼
0.003%.Numerically, one finds&π

e2Q0 = −3.929%,&π
e2Q2 = 0.053(11)%,&π

e2Q4 = 0.073(3)%, and
&

(π )
e4Q0 = 0.055(3)%, which lead to the SM expectation4

R(SM)πe/µ = (1.23524 ± 0.00015) × 10−4. 4.

We reiterate that (a) this prediction includes structure-dependent hard bremsstrahlung correc-
tions to )[π+ → e+ν(γ )], which are not helicity suppressed, and (b) the dominant uncertainty

4Due to a larger uncertainty estimate in&π
e4Q0 , namely&π

e4Q0 = 0.055(10)%,Reference 56 quotes a final result
of R(SM)πe/µ = (1.2352 ± 0.0002) × 10−4.
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(dominated by PIENU expt.)

• PIONEER @ PSI will match theoretical uncertainty.  
Order of magnitude gap — room for surprises!
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(dominated by PIENU expt.)

A next-generation rare pion 
decay experiment

David Hertzog
hertzog@uw.edu

University of Washington
SNOWMASS 2021(2)

A Growing Collaboration:  New members very welcome !!

Plot by Joshua Labounty
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Non-interfering terms with 
‘wrong’ neutrino flavor

Status of LFU test

ΛA ~ 5.5 TeV   →  ~ 22 TeV with PIONEER
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• BSM axial-current contribution

14



Non-interfering terms with 
‘wrong’ neutrino flavor

Status of LFU test

• BSM pseudoscalar contribution 

• Not helicity suppressed!

• LFU violation ↔  [εP]αα ≠ 𝜅 mα 

• Marginalizing w.r.t.  εPex
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@  μ = 2 GeV

ΛP ~ 10 TeVΛP ~ 350 TeV  → ~1500 TeV with PIONEER
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(α/π)~ 2.⨉ 10-3 and smaller effects

Extract Vud=CosθC and  Vus=SinθC  from various decays
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Status of Cabibbo universality test

with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

0.960 0.965 0.970 0.975
0.220

0.222

0.224

0.226

0.228

V

us

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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Figure 3: HBChPT diagrams contributing to the anomalous dimension of gV and to �̃RC at two loop.
Only the first two diagrams give rise to terms in the �̃1 enhanced by ⇡

2 [100]. These diagrams also give
rise to the leading ↵

2
⇡
2
/�

2 behavior captured by the nonrelativistic Fermi function.

We thus arrive to our final form for the di↵erential decay rate:

d�n

dEe

=
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|Vud|

2
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2 [gV (µ�)]
2
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1+�RC(Ee, µ�)
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1+�recoil(Ee)

◆
. (104)

Compared to state-of-the-art analyses of neutron decay in the literature (see e.g. Ref. [38]), our result (104)
amounts to replacing the relativistic Fermi function [53, 109–111, 124–127] with the nonrelativistic one,
F0 ! FNR. While we arrived at this result by constructing the relevant terms of the amplitude in the
EFT framework, one could also argue for this replacement along the following lines. First, recall that
the leading corrections to the phase space coming from the distortion of the electron wavefunction in the
Coulomb field of the proton is usually captured by the function [53]

F0(�) =
2

1 + �
F (�) = 4(2Ee�R)2(��1)

e
⇡y

|�(� + iy)|2

(�(1 + 2�))2
, y =

↵

�
, � =

p
1� ↵2. (105)

This form is obtained by solving the Dirac equation for an electron moving in the charge distribution
of a uniformly charged sphere of radius R [53], but corresponds to a rescaling of the solution of the
Dirac equation for a point-like proton, F (�), evaluated not at the origin, where the wavefunction diverges
logarithmically, but at the “nucleon radius” R. R corresponds to a mass scale much larger than me, and
e↵ectively acts as a UV regulator. So we see that while F0(�) coincides with FNR(�) at one-loop level, F0

includes a dependence on the UV regulator via the logarithms of R that first appear at O(↵2). Expanding
F0 in series of ↵, one obtains

F0(�) = FNR (�)
⇥
1� ↵

2 (�E � 3 + ln(2EeR�)) +O(↵4)
⇤
. (106)

The dependence on the UV regulator R ⇠ 1/µ does not match the µ-dependence of gV (µ) in the MS�
scheme presented so far. In dimensional regularization, indeed, the lnR term in Eq. (106) corresponds to
a UV singularity that appears in the first two diagrams in Fig. 3, when we consider only the contribution
arising from picking the two nucleon poles. This is only one piece of the full anomalous dimension �̃1. In
order not to double-count large logarithms, one should set the logarithmic term in F0 to zero when using
the RGEs to evaluate the large logarithms as we do here. The remaining O(↵2) terms in Eq. (106) are
incomplete and beyond the accuracy of our calculation, which allows us to drop them and replace the
relativistic Fermi function F0 by its nonrelativistic counterpart FNR.

24

4

a1) b1) c1) d1)

f1) g1) h1) i1)

e1)

j1)

c2)a2) b2)

LO

NLO

FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�) (upper panel) and O(✏�) (lower panel).
Single, double, wavy, and dashed lines denote, respectively, leptons, nucleons, photons, and pions. Dots refer to interactions

from the lowest-order chiral Lagrangians L
p2
⇡ and L

p
⇡N , while diamonds represent insertions of L

e2p0
⇡ . Circled dots denote

interactions from the NLO chiral Lagrangian L
p2

⇡N .

only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]

� = g
QCD

A

⇣
1 + �

(�)
RC

� 2Re(✏R)
⌘
, (12)

where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is

�
(�)
RC

=
↵

2⇡

⇣
�(0)

A,em +�(1)

A,em ��(0)

V em

⌘
. (13)

For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (14)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (15)

This shift has no impact on the current first-row CKM
discrepancy because the most accurate determination
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FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�). Single, double, wavy and dashed lines
denote, respectively, leptons, nucleons, photons and pions. Dots denote interactions from the lowest order chiral Lagrangians

L
p2
⇡ and L

p
⇡N , while diamonds on a pion line represent insertions of Le2p0

⇡ .

FIG. 2: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏�). Circled dots denote interactions from the

NLO chiral Lagrangian L
p2

⇡N , while diamonds on a nucleon line represent insertions of Le2p0

⇡N . All other notation is as in Fig. 1.

Numerical impact — We now estimate the numerical

impact of the various corrections beginning with �(0,1)
em .

Existing lattice data indicate that gA has a mild m⇡ de-

pendence [10], and we set g
(0)

A = gA = 1.27. Using the
physical masses of charged and neutral pions, the average
nucleon mass mN = 938.9 MeV, and F⇡ = 92.4 MeV, we
obtain Z⇡ = 0.81. The NLO LECs c3 and c4 have been
extracted from pion-nucleon scattering [31, 32]. They
show a sizable dependence on the chiral order at which
the fit to ⇡-N data is carried out (stabilizing between
N2LO and N3LO). In an EFT without explicit � degrees
of freedom, they are dominated by virtual � contribu-
tions and thus anomalously large. We then obtain

c3|NLO
= �3.61(5)GeV�1

, c4|NLO
= 2.17(3)GeV�1

c3|N2LO
= �5.39(5)GeV�1

, c4|N2LO
= 3, 62(3)GeV�1

.

c3|N3LO
= �5.67(6)GeV�1

, c4|N3LO
= 4.35(4)GeV�1

.

(12)

With this input, we obtain
↵

2⇡
�(0)

em
2 {0.25, 0.65} · 10�2

, (13)

↵

2⇡
�(1)

em
2 {1.15, 1.85} · 10�2

, (14)

↵

2⇡
�(1)

em
= {1.15, 1, 70, 1.85} · 10�2

, (15)

where the range in �(0)

em is obtained by setting Ĉ⇡(µ) = 0
and varying µ between mN/2 and mN . The range in

�(1)

em by taking NLO or N3LO extractions of c3,4 [32] (the
N2LO results would give 1.7 · 10�2). While the NLO
correction is somewhat larger than the LO correction,
we stress that this is not the full correction because of
the counter term contribution Ĉ⇡. Combining LO and
NLO corrections, we estimate a correction to gA at the
percent level

�gA/g
(0)

A =
↵

2⇡
�(0+1)

em
2 {1.4, 2.5} · 10�2

. (16)

This shift due to isospin breaking has no impact on the
current first-row CKM discrepancy as the most accurate
determination of gA is extracted from experiments, where
these corrections are automatically included. comment
on future work on isospin-breaking nuclear corrections?
The correction does have a big impact on first-principle
lattice-QCD computations of neutron � decay. Present

n p

eν
γ

<p|V|n> with QED:  ChPT + LECs estimated with dispersive 
methods and  LQCD  

<p|A|n> form experiment 

Matching and running:  VC-Dekens-Mereghetti-Tomalak 2306.03138 
Input from dispersive theory and LQCD
[Seng et al. 1807.10197,   2308.16755]

Corrections to neutron decay
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• Convenient starting point for decay rate calculation is an effective theory with nucleons,  leptons and photons

Figure 2: Diagrams that contribute to �VW in HBChPT are shown. Single lines denote electrons and
neutrinos. The remaining notations are the same as in Fig. 1. In this case, the sources inject zero
momentum. The first two diagrams originate from the LO ⇡N Lagrangian L

p

⇡N
, the last diagram denotes

contributions from L
e
2
p

⇡N`
. Diagrams with the sources coupling to pions do not contribute at this order.

To highlight the UV structure of Eq. (47), we add and subtract the high-energy limit of the hadronic
tensor provided by the operator product expansion (OPE)

gµ⌫T
µ⌫

V V
(q, v)

��
OPE

=
iv · q

q2 � µ2
0

⇣
2� d+ 2

↵s

⇡

⌘
, (49)

where for the OPE of the relevant currents we use results from Refs. [83, 84], adapted to include the
appropriate color factors [35]. Since our calculation is only accurate at leading logarithm in O(↵↵s),
the O(↵s) correction to the OPE is computed in d = 4. Note that in Eq. (49) we have introduced an
arbitrary scale µ0 to regulate infrared divergences that appear when evaluating the convolution integrals
with TOPE. Performing the relevant integrations, we obtain

�V V |
LEFT =

e
2

(4⇡)2

✓
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ˆ

d4q

(2⇡)4
v · q gµ⌫T
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V V (q, v)
�
q2 � �2

�

�2

!
, (50)

where T denotes the subtracted hadronic tensor, T = T � TOPE. T depends on µ0 in such a way that the
final results are µ0-independent. Finally, note that we are dropping terms of O(↵↵s) that appear without
logarithmic enhancements, because they are beyond the accuracy of our calculation.

Equating Eqs. (45) and (46), we obtain a representation for g9:

g
r

9(µ�, µ) =

ˆ
d4q

(2⇡)4
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4
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⇠

2

#
. (51)

Alternatively, to control the infrared region and see a cancellation of the infrared divergences, we can
introduce the combination T̃ = T �TIR, where TIR is the leading infrared contribution gµ⌫T

µ⌫

IR = i/ (v · q)
and obtain

g
r

9(µ�, µ) =

ˆ
ddq

(2⇡)d
v · q gµ⌫ T̃
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V V
(q, v)
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1
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µ
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3

2
+

⇠

2

#
. (52)

4.3 Electroweak coupling constants

We follow the same strategy for the determination of the electroweak coupling constants. In this case, the
operators V1 and V2 receive contributions from the isovector component of the electromagnetic charges,
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Status of Cabibbo universality test

with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

0.960 0.965 0.970 0.975
0.220

0.222

0.224

0.226

0.228

V

us

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-

2

Vus

Vud

 K→
 μν 

/ π→
 μν 

 

(0.22%)

K→ πlν (0.25%)

unitarity0+ → 0+ (0.031%)
Neutron (0.043%)

ΔCKM = |Vud|2 + |Vus|2 - 1
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]

log2
f t

=
G2

Fm5
e |Vud |2

p3 (1+DV
R +d 0

R +dNS �dC) (1)

where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]

log2
f t

=
G2

Fm5
e |Vud |2

p3 (1+DV
R +d 0

R +dNS �dC) (1)

where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]

log2
f t

=
G2

Fm5
e |Vud |2

p3 (1+DV
R +d 0

R +dNS �dC) (1)

where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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Status of Cabibbo universality test

with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

0.960 0.965 0.970 0.975
0.220

0.222

0.224

0.226

0.228

V

us

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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nuclear uncertainty)
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-

2

_

_

19



Implications for new physics
• Start with LEFT 

Elements of the 
unitary CKM matrix

Channel-dependent 
CKM elements
extracted in the  
‘SM-like analysis’

Known 
coefficients

LEFT 
couplings 

Find set of ε’s so that Vud and Vus bands meet on the unitarity circle

with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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Unveiling R-handed quark currents?

ments by almost 0.5�, an e↵ect that would increase further for
the 0.2% scenario. In this case, the significance of the tension
in �(3)

CKM, the measure directly derived from kaon decays, would
increase or decrease by more than 1�, demonstrating that a new
precision measurement of the Kµ3/Kµ2 branching fraction really
has the potential to either resolve or substantially corroborate
the tension between the K`2 and K`3 CKM-element determina-
tions. Once the experimental situation in the kaon sector is clar-
ified, possible BSM interpretations become much more robust,
as we discuss in the subsequent section.

3. Constraints on physics beyond the Standard Model

The current tension with CKM unitarity has triggered re-
newed interest in possible BSM explanations [107, 108], in-
cluding interpretations in terms of vector-like quarks [109–
111] and leptons [112, 113], as modifications of the Fermi
constant [114, 115], in the context of lepton flavor universal-
ity [116–121], and even allowing for a correlation with di-
electron searches at the LHC [122, 123]. Here, we illustrate
the impact of our proposed Kµ3/Kµ2 measurement via the con-
straints on right-handed currents [32, 124–126], which can not
only address the tension between � and kaon decays, but also
between K`2 and K`3. This discussion becomes most transpar-
ent in terms of the �(i)

CKM introduced in Eq. (8).
In general, a single parameter is not su�cient to explain both

tensions, as they are governed by a-priori independent oper-
ators, and we therefore introduce two parameters ✏R, ✏(s)
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non-vanishing value of ✏R is mainly driven by the �-decay ob-
servables, while the goal of the new Kµ3/Kµ2 input would be
a conclusive answer to the question whether or not further
strangeness right-handed currents need to be invoked. Here,
the sensitivity of �✏R to the di↵erent scenarios reflects similar
changes in �(3)

CKM as observed in Table 1.
We note here that other probes of ✏R and �✏R are currently

less constraining and are not reported in Fig. 2. In particular, ✏R
can be determined from the comparison of the experimentally
measured axial charge � = gA/gV and its value computed in
lattice QCD [28, 127, 128], up to a recently uncovered electro-
magnetic correction [129]. This results in ✏R = �0.2(1.2)%.
Similarly, assuming a high-scale origin for the right-handed
couplings and writing the operator in an SU(2) ⇥ U(1) invariant
form, one obtains constraints from associated Higgs production
at the few-percent level [125].

A similar analysis could be performed in terms of pseu-
doscalar couplings ✏P, ✏(s)

P , which only a↵ect the axial-current
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impact of the proposed new measurement of the Kµ3/Kµ2 branching fraction
thus concerns a corresponding shift in the �(3)

CKM band if the ±2� scenarios
were realized.

numbers change to

✏R = �0.67(27) ⇥ 10�3 [2.5�],

�✏R = �1.8(1.6) ⇥ 10�3 [1.1�], (12)

while a future measurement at 0.2% with central value 2� be-
low the current one would give

✏R = �0.70(27) ⇥ 10�3 [2.6�],

�✏R = �5.7(1.6) ⇥ 10�3 [3.5�]. (13)

This shows that the proposed measurement would have a signif-
icant impact on revealing or further constraining right-handed
charged currents involving strange quarks. In particular, the
non-vanishing value of ✏R is mainly driven by the �-decay ob-
servables, while the goal of the new Kµ3/Kµ2 input would be
a conclusive answer to the question whether or not further
strangeness right-handed currents need to be invoked. Here,
the sensitivity of �✏R to the di↵erent scenarios reflects similar
changes in �(3)

CKM as observed in Table 1.
We note here that other probes of ✏R and �✏R are currently

less constraining and are not reported in Fig. 2. In particular, ✏R
can be determined from the comparison of the experimentally
measured axial charge � = gA/gV and its value computed in
lattice QCD [28, 127, 128], up to a recently uncovered electro-
magnetic correction [129]. This results in ✏R = �0.2(1.2)%.
Similarly, assuming a high-scale origin for the right-handed
couplings and writing the operator in an SU(2) ⇥ U(1) invariant
form, one obtains constraints from associated Higgs production
at the few-percent level [125].

A similar analysis could be performed in terms of pseu-
doscalar couplings ✏P, ✏(s)

P , which only a↵ect the axial-current
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ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)

Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)
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Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)

Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [2]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.
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Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)

Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [2]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.

– 17 –

moment operators,

µ
d

dµ
CeB

pr
=

1

16π2

[

4g1Nc (yu + yq)C
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CeW

pr
=

1

16π2

[

−2g2NcC
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CuB

pr
=

1

16π2

[

4g1(ye + yl)C
(3)
lequ
stpr

[Ye]ts

]

+ . . .

µ
d

dµ
CuW

pr
=

1

16π2

[

−2g2C
(3)
lequ
stpr

[Ye]ts

]

+ . . . , (5.6)

where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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Qlu (l̄pγµlr)(ūsγµut)
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Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.
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+ . . . , (5.6)

where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)
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Qlu (l̄pγµlr)(ūsγµut)
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8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)
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moment operators,

µ
d

dµ
CeB

pr
=

1

16π2

[

4g1Nc (yu + yq)C
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CeW

pr
=

1

16π2

[

−2g2NcC
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CuB

pr
=

1

16π2

[

4g1(ye + yl)C
(3)
lequ
stpr

[Ye]ts

]

+ . . .

µ
d

dµ
CuW

pr
=

1

16π2

[

−2g2C
(3)
lequ
stpr

[Ye]ts

]

+ . . . , (5.6)

where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)

Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [2]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.

– 17 –

moment operators,

µ
d

dµ
CeB
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=

1

16π2

[

4g1Nc (yu + yq)C
(3)
lequ
prst

[Yu]ts

]
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µ
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dµ
CeW

pr
=
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16π2

[

−2g2NcC
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CuB

pr
=

1

16π2

[

4g1(ye + yl)C
(3)
lequ
stpr

[Ye]ts

]

+ . . .

µ
d

dµ
CuW

pr
=

1

16π2

[

−2g2C
(3)
lequ
stpr

[Ye]ts

]

+ . . . , (5.6)

where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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ud (ūpγµur)(d̄sγµdt)

Q(8)
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ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)
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εL 

εL 

εR 

εL 

εL 

εT 

εS,P 

εS,P 

Constrained by  pp →  eν+X and  pp →  e+e− +X  at the LHC

 εα ~10-3 -10-4  LHC:  pp → eν + X 

mT(GeV)
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ν GCµ
ρ
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ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD
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H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.
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µνG

Aµν

QHW H†HW I
µνW
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Q(1)
qu (q̄pγµqr)(ūsγµut)
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Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)

Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [2]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.

– 17 –

moment operators,

µ
d

dµ
CeB

pr
=

1

16π2

[

4g1Nc (yu + yq)C
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CeW

pr
=

1

16π2

[

−2g2NcC
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d
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CuB

pr
=
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[

4g1(ye + yl)C
(3)
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[Ye]ts

]

+ . . .

µ
d
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CuW

pr
=

1

16π2

[

−2g2C
(3)
lequ
stpr

[Ye]ts

]

+ . . . , (5.6)

where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,

– 13 –

1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)
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Q(1)
qu (q̄pγµqr)(ūsγµut)
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where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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Can be probed at the LHC by associated Higgs + W production (5-10%)
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q
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LHC run 2 projection would lead to εL,R ~ 3-4%       
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ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)
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Qed (ēpγµer)(d̄sγµdt)

Q(1)
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moment operators,
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CeB
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4g1Nc (yu + yq)C
(3)
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[Yu]ts

]

+ . . .

µ
d
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CeW

pr
=
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[

−2g2NcC
(3)
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[Yu]ts

]
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µ
d
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CuB

pr
=
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[

4g1(ye + yl)C
(3)
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]
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µ
d
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CuW

pr
=

1

16π2

[

−2g2C
(3)
lequ
stpr

[Ye]ts

]

+ . . . , (5.6)

where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +
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16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,

– 13 –

moment operators,

µ
d

dµ
CeB

pr
=

1

16π2

[

4g1Nc (yu + yq)C
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CeW

pr
=

1

16π2

[

−2g2NcC
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CuB

pr
=

1

16π2

[

4g1(ye + yl)C
(3)
lequ
stpr

[Ye]ts

]

+ . . .

µ
d

dµ
CuW

pr
=

1

16π2

[

−2g2C
(3)
lequ
stpr

[Ye]ts

]

+ . . . , (5.6)

where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,

– 13 –

1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)
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Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)
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Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [2]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.
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Qlu (l̄pγµlr)(ūsγµut)
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where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is
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108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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Qlu (l̄pγµlr)(ūsγµut)
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where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),
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and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
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Q(3)
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6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix
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coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in
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ϵIJKW̃ Iν
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←→
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Q(1)
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←→
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Q(3)
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D I

µH)(q̄pτIγµqr)
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←→
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QHud + h.c. i(H̃†DµH)(ūpγµdr)
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k
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Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [2]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.
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Figure 12: Excluding the CDF mW , we plot �AIC for the 1024 models with respect to their
number of parameters. Models containing the category CHud are marked with green triangles.
Orange diamonds represent those that contain both CST and Cll, but not CHud. The rest of the
models are denoted by blue circles. The purple stars denote the seven models we have analyzed
in Section 7 and are labeled by their acronyms.

and CST has a �AIC = 9, with both Cll and CST nonzero at more than 3�,

Cll = (�0.013± 0.004) TeV�2, CST = �(0.0083± 0.0026) TeV�2 . (8.3)

The combination of Cll and CST performs significantly better than having just one of the two.
Cll can improve low-energy observables at the cost of a poorer description of several EWPO.
Similarly, CST can improve mW a bit but worsens other observables. However, the combination
performs better across the chart.

The nine-parameter model with CST , Cll, and six scalar/pseudoscalar operators yields�AIC =
10. It performs better than the L6(SPS) model, which only contains the scalar/pseudoscalar
operators and has a �AIC = 1, shown in Fig. 12 by a purple star right above the SM line
(�AIC = 0). The remaining three models studied in Section 7, also marked by purple stars, all
have a worse AIC than the SM and thus are disfavored.

Among all models that contain neither CHud nor the pair {CST , Cll} (marked by blue circles),
the best performance, �AIC = 5, is achieved by a model consisting of 13 parameters, including

38

1024 models

• Performed ‘CLEWed’ analysis within  
SMEFT.   Scanned model space by ‘turning 
on’ certain classes of effective couplings 

• Model selection? Akaike Information 
Criterion [AIC = 2k - ln(L))   favors  
models with Right-Handed Charged 
Currents of quarks (V+A)  

• Best fit to CLEW data:  two RH CC vertex 
corrections and the S parameter 

Standard Model

More favored 
models

Less favored
 models

CHud

‘Global’ analysis 

CKM “anomaly” not ruled out by other data. 
Unitarity test provides relevant input to unravel possible new physics
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Figure 12: Excluding the CDF mW , we plot �AIC for the 1024 models with respect to their
number of parameters. Models containing the category CHud are marked with green triangles.
Orange diamonds represent those that contain both CST and Cll, but not CHud. The rest of the
models are denoted by blue circles. The purple stars denote the seven models we have analyzed
in Section 7 and are labeled by their acronyms.

and CST has a �AIC = 9, with both Cll and CST nonzero at more than 3�,

Cll = (�0.013± 0.004) TeV�2, CST = �(0.0083± 0.0026) TeV�2 . (8.3)

The combination of Cll and CST performs significantly better than having just one of the two.
Cll can improve low-energy observables at the cost of a poorer description of several EWPO.
Similarly, CST can improve mW a bit but worsens other observables. However, the combination
performs better across the chart.

The nine-parameter model with CST , Cll, and six scalar/pseudoscalar operators yields�AIC =
10. It performs better than the L6(SPS) model, which only contains the scalar/pseudoscalar
operators and has a �AIC = 1, shown in Fig. 12 by a purple star right above the SM line
(�AIC = 0). The remaining three models studied in Section 7, also marked by purple stars, all
have a worse AIC than the SM and thus are disfavored.

Among all models that contain neither CHud nor the pair {CST , Cll} (marked by blue circles),
the best performance, �AIC = 5, is achieved by a model consisting of 13 parameters, including

38

1024 models

• Performed ‘CLEWed’ analysis within  
SMEFT.   Scanned model space by ‘turning 
on’ certain classes of effective couplings 

• Model selection? Akaike Information 
Criterion [AIC = 2k - ln(L))   favors  
models with Right-Handed Charged 
Currents of quarks (V+A)  

• Best fit to CLEW data:  two RH CC vertex 
corrections and the S parameter 

Standard Model

More favored 
models

Less favored
 models

CHud

‘Global’ analysis 

CKM “anomaly” not ruled out by other data. 
Unitarity test provides relevant input to unravel possible new physics
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• Illustrated with (semi)leptonic charged currents some general features o precision tests at low energy 

• Impactful tests require: 

• Ability to compute the SM prediction to high accuracy

• Ability to measure to high precision (similar to theory)

• Framework to interpret possible deviations in light of ‘everything else’, including high-energy searches

Precision tests: lessons

24



Lepton Number Violation
&

Neutrinoless double beta decay 



Neutrino mass and new physics

26

• Neutrino masses not accounted in the Standard Model 

i =1,2,3

No 
neutrino 

mass

The Standard Model

Understanding origin and nature of neutrino mass is an open problem,                       
with implications for baryogenesis, DM,  structure formation,  … 



Neutrino mass and symmetries

27

B. Kayser 1984

(a) -- I Lorentz; B, E 

i 
((µ_ v+l (17 v + )) 

t t I 
CPT CPT 

(b) 
Lorentz 

i 
(v _ v+l 

t 
CPT 

FIGURE I (a) The four distinct states of a Dirac neutrino v 0 . (b) The two distinct 
states of a Majorana neutrino vM. 

including its electromagnetic characteristics, and its special and sur-
prising C, P, CP, and CPT properties. Next, we shall show how a 
Majorana neutrino is described in field theory. Then we shall see 
why it is that we do not already know whether neutrinos are Majorana 
or Dirac particles. Finally, we shall discuss the one experimental 
approach that currently shows some promise of settling this matter: 
the search for neutrinoless double beta decay. 

To understand the precise physical difference between a Majorana 
and a Dirac neutrino, let us imagine that there exists a massive 
neutrino v _ with negative helicity (indicated by the subscript), as 
considered at the extreme left of Fig. la. Assuming that the world 
is CPT-invariant, the existence of v _ implies (as Fig. la indicates) 
the existence of its CPT mirror-image, a right-handed antineutrino 
v +. In addition, if v _ is massive, then it travels slower than light, 
so that by travelling sufficiently fast an observer can overtake it. If 
he does, then in his frame the neutrino is going the other way, but 
still spinning the same way as in the original frame. That is, the 
Lorentz transformation to this observer's frame turns v into a 
positive-helicity particle "v + ,'' shown at the extreme right of Fig. 

70 

Dirac: 
4 states

Majorana: 
2 states

Only possible if there no  
internal quantum number 
that flips sign under “C”

(m≠0)

(m≠0)

ν(L)=ν− p

S

ν(R)=ν+

p

S

• Lorentz invariance ⇒ two options: Dirac or Majorana 



Neutrino mass and symmetries

27

B. Kayser 1984

(a) -- I Lorentz; B, E 

i 
((µ_ v+l (17 v + )) 

t t I 
CPT CPT 

(b) 
Lorentz 

i 
(v _ v+l 

t 
CPT 

FIGURE I (a) The four distinct states of a Dirac neutrino v 0 . (b) The two distinct 
states of a Majorana neutrino vM. 

including its electromagnetic characteristics, and its special and sur-
prising C, P, CP, and CPT properties. Next, we shall show how a 
Majorana neutrino is described in field theory. Then we shall see 
why it is that we do not already know whether neutrinos are Majorana 
or Dirac particles. Finally, we shall discuss the one experimental 
approach that currently shows some promise of settling this matter: 
the search for neutrinoless double beta decay. 

To understand the precise physical difference between a Majorana 
and a Dirac neutrino, let us imagine that there exists a massive 
neutrino v _ with negative helicity (indicated by the subscript), as 
considered at the extreme left of Fig. la. Assuming that the world 
is CPT-invariant, the existence of v _ implies (as Fig. la indicates) 
the existence of its CPT mirror-image, a right-handed antineutrino 
v +. In addition, if v _ is massive, then it travels slower than light, 
so that by travelling sufficiently fast an observer can overtake it. If 
he does, then in his frame the neutrino is going the other way, but 
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Which option is realized in nature? 

• Smallness of ν mass and chiral nature of the weak interactions implies 
that neutrino-less processes are the best probes of ΔL=2 interactions

• 0νββ provides in many scenarios the strongest sensitivity to LNV 
interactions (“Avogadro’s number wins”,  P.  Vogel)
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Neutrinoless double beta decay

Potentially observable in even-
even nuclei  (48Ca, 76Ge,136Xe, …) 

for which single beta decay is 
energetically forbidden

ΔL=2

29

2νββ

0νββ

(Ee1 + Ee2)/Q

2νββ observed, with 
T1/2 ~ 1021yr

• Observation would have far-reaching implications 

Shechter-Valle 1982

• Demonstrate that neutrinos are Majorana fermions 

• Establish LNV,  key ingredient to generate the 
baryon asymmetry via leptogenesis

Fukugita-Yanagida  1987
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1/Coupling 

vEW

Unexplored
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1/Coupling 

Λ

vEW

High-scale see-saw

0νββ physics reach

• 0νββ searches @ T1/2 >1027-28 yr will have broad sensitivity to LNV mechanisms

 1) CP- and L- violating out-
of-equilibrium 

decays of heavy  νRi  ⇒ nL

  2) EW sphalerons  ⇒ nB = # nL

Baryogengesis via Leptogenesis

Fukugita-Yanagida  1987
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These contributions can compete if scale is 
not too high (10-100 TeV) and lead to new 

mechanisms at the nuclear scale 
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 Light (nearly sterile) Majorana neutrinos
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vEW

Unexplored

30

1/Coupling 

Λ

vEW

High-scale see-saw

0νββ physics reach

Left-Right SM
RPV SUSY

...

Light sterile ν’s
[neutrino portal] 

• 0νββ searches @ T1/2 >1027-28 yr will have broad sensitivity to LNV mechanisms

Λχ ~ GeV

kF ~ 100 MeV

T1/2  ∝ (mW/Λ)A  (Λχ/mW)B  (kF/Λχ)C

SMEFT LEFT Chiral EFT

• Multi-scale problem best tackled through 
‘end-to-end’ EFT: only chance to achieve 
controllable uncertainty

• Synergy of  EFT, Lattice QCD,  and first-
principles nuclear structure  

White paper 2203. 21169 and refs therein
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E
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BSM dynamics

SM-EFT

LEFT

dim5 dim7 dim9

dim3 dim9dim6,7 Hadronic matrix elements for �L = 2

n p

n p

e
-

e
-

2. L
(6,7)
�L=2

• still long distance
• at LO: nucleon axial, vector, scalar, pseudoscalar and tensor form

factors

M. Doi, T. Kotani, E. Takasugi, ‘85,
H. Pas, M. Hirsch, H. V. Klapdor-Kleingrothaus, S. G. Kovalenko, ‘99.

well determined hadronic input

π-

π-ν

ν d

d u

u

Example:
Left-Right Symmetric Model

Chiral EFT (N,π,…)

d

d

u

u

e
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L L

H H
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ed
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y y

Hadronic matrix 
elements 

Nuclear 
matrix 

elements 

‘End-to-end’ EFT framework

31

Chiral EFT

J =

O(1) O

⇣
Q2

⇤2
�

⌘

• current and potentials: perturbative expansion in Q/⇤�

• iterate potentials to find bound states (non perturbative)

Goals

1. write down O
�
� , Q�

�0

2. estimate the couplings
3. write down 0⌫�� currents

n

n p

p

e

e
 Vnn→pp Half-life (T1/2)76Ge 76Se

V. Cirigliano,  W. Dekens,  J. de Vries, M. Graesser, E. Mereghetti,   JHEP 1812 (2018) 097 [1806.02780]
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(Λ >> v) → dominant low-energy 
remnant is Weinberg’s dim-5 operator:  

• Below the weak scale this is just the 
neutrino Majorana mass (mββ ~ wee v2/Λ) 

• 0νββ mediated by active νM with 
potential Vnn→pp with long- and short-
range components proportional to mββ 
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• Insight from EFT:  new NN contact interaction to leading order in  Q/Λχ

Recent theoretical developments

33
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• gν estimated through dispersive analysis [1] and used  in 
first-principles calculation [2] of 48Ca →48Ti:                                  
contact term enhances n.m.e.  by ~50%  

[1] VC, Dekens, deVries, Hoferichter, Mereghetti,  2012.11602,   2102.03371

[2] Wirth, Yao, Hergert,  2105.05415.  See also  Belley et al, 2307.15156, 2308.15634
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• gν estimated through dispersive analysis [1] and used  in 
first-principles calculation [2] of 48Ca →48Ti:                                  
contact term enhances n.m.e.  by ~50%  

[1] VC, Dekens, deVries, Hoferichter, Mereghetti,  2012.11602,   2102.03371

[2] Wirth, Yao, Hergert,  2105.05415.  See also  Belley et al, 2307.15156, 2308.15634

  Overall, uncertainties still sizable. Progress requires theoretical 
activity at the interface of EFT, lattice QCD, and nuclear structure 

  VC, W. Dekens, J. de Vries, M. Graesser,               
 E. Mereghetti,  S. Pastore, U. van Kolck  1802.10097
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Discovery potential / target

• Within the high-scale seesaw, 0νββ can be predicted in terms of  ν mass parameters:  Γ∝|M0ν|2 (mββ)2

mlightest2 = ?
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Discovery potential / target

Beyond ton scale target

Natural (but challenging!) beyond ton-scale target is mββ ~ meV

• Within the high-scale seesaw, 0νββ can be predicted in terms of  ν mass parameters:  Γ∝|M0ν|2 (mββ)2



Cosmology 

• High scale seesaw implies falsifiable correlation with other ν mass probes        

• Future data coupled with improved theory can challenge the 3-neutrino paradigm, unravel new LNV sources 
or physics beyond  “ΛCDM + mν”              

Tritium β decay0νββ decay
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KATRINProject8
Ton scale Ton scale

Cosmology
2404.03002

(95% CL limit)

Bound is quite sensitive to 
prior on Σ  (Σ>0 used)

Diagnosing power



Λ  
(~ TeV)

E

Λχ 
 (~GeV)

kF, mπ

vew , MW

~TeV-scale LNV
d

d

u

u

e

eH

νL

ed

u

dim7 dim9

dim9dim6,7 

d

d u

u

Hadronic matrix elements for �L = 2

n p

n p

e
-

e
-

2. L
(6,7)
�L=2

• still long distance
• at LO: nucleon axial, vector, scalar, pseudoscalar and tensor form

factors

M. Doi, T. Kotani, E. Takasugi, ‘85,
H. Pas, M. Hirsch, H. V. Klapdor-Kleingrothaus, S. G. Kovalenko, ‘99.

well determined hadronic input

ν

• Higher dim operators arise in well 
motivated models. Can compete with 
Dim=5 operator if  Λ~ O(1-10 TeV) 

• New mechanisms at the hadronic scale:  
need appropriate chiral EFT treatment. Not 
including pion-range effects leads to factor 
~ (Q/Λχ)2 ~1/100 reduction in sensitivity to 
short-distance couplings! 

• 31 operators up to dimension 9
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Bounds reflect dependence on Λχ /Λ and  Q/Λχ

What scales are we probing?

Dim 7 in 
SM-EFT

Dim 9 in 
SM-EFT d

d u

u

w

w

d

d u

u

(v/Λ)3

(v/Λ)5

VC,  W. Dekens,  J. de Vries,  M. Graesser,  E. Mereghetti,  1806.02780
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• TeV-scale LNV induces contributions to 0νββ not directly related to the exchange 
of light neutrinos, within reach of planned experiments

39

M2,3 = 1 TeV

Example: left-right symmetric model with 
type-II seesaw

Tello-Nemevesek-
Nesti-Senjanovic-
Vissani 1011.3522

 
Ge-Lindner-Patra  

1508.07286
…

Phenomenological interest (1)
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• May lead to correlated (or precursor!) signal at LHC:  pp →ee jj 

d

d

u

u

e

e

LHC 0νββ

Classic LRSM example

…

Keung-Senjanovic ’83

Maiezza-Nemevesek-
Nesti- Senjanovic 

1005.5160

Helo-Kovalenko-Hirsch-
Pas 1303.0899, 1307.4849

Cai, Han, Li, Ruiz 
1711.02180

Phenomenological interest (2)
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• May lead to correlated (or precursor!) signal at LHC:  pp →ee jj 

Keung-Senjanovic ’83

Maiezza-Nemevesek-
Nesti- Senjanovic 

1005.5160

Helo-Kovalenko-Hirsch-
Pas 1303.0899, 1307.4849

Cai, Han, Li, Ruiz 
1711.02180

Phenomenological interest (2)

Peng,  Ramsey-Musolf,  
Winslow, 1508.0444 

…

pp →eejj

Simplified model 

Hadronic / nuclear 
uncertainty 

• LHC searches important to unravel origin of LNV and implications for letpogenesis  
Deppisch-Harz-Hirsch 1312.4447,   Deppisch-Graf-Harz-Huang 1711.10432,  Harz, Ramsey-Musolf, et al 2106.10838 , …



Outlook on 0νββ and LNV

• EFT approach provides a general framework to:

1. Relate 0νββ to underlying LNV dynamics (and collider & cosmology)

2. Organize contributions to hadronic and nuclear matrix elements

Improving the theory uncertainty is challenging,  but there are good prospects thanks to 
advances in EFT,  lattice QCD,  and nuclear structure  

• Ton-scale 0νββ searches have significant discovery potential — we simply don’t know the origin 
of mν and the scale Λ associated with LNV 

41



Concluding comments

1/Coupling 

M

vEW

• Experiments at the low-energy Precision / Intensity Frontier 
are exploring uncharted territory in the search for new 
physics,  in a complementary way to other frontiers

42

• The low-energy frontier probes BSM 
physics related to the ‘big questions’

• Theoretical challenges addressed by 
a combination of EFT, lattice QCD 
and other non-perturbative methods

Origin of neutrino mass

Are there new forces,                            
weaker than the weak force? 

Nature of dark matter                  
Light & weakly interacting particles

Baryon asymmetry                
(violation of B, L, CP) 

Shedding light on open questions

0νββ
Charged LFV
(μ→e, e ↔τ)

…
Quark FCNC

EDMs,  …, 
n-n oscillations

_

 p-decay

1. Rare / forbidden processes

PV electron scattering, 
Muon g-2,  β-decays,  …

2. Precision tests

Searches for dark 
bosons, axions, ALPs, 

…

Absolute ν mass, 
ν oscillations, ν scattering,,

 sterile ν,…

3. Light & weakly coupled

Intensity Frontier probes cluster around open questions*
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Probing
Lepton Flavor Violation               
with charged leptons
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• ν oscillations ⇒ Le,μ,τ  not conserved  

• In SM + massive ν,  Charged-LFV decays suppressed to unobservable level    

LFV and new physics (1)

νi

γ

• Observation of CLFV processes would unambiguously indicate BSM physics, 
related to the origin of  leptonic ‘flavor’ & possibly neutrino mass

Petcov ’77,   Marciano-Sanda ’77,  Shrock ’77…
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• Sensitivity to broad spectrum of new physics:  both heavy and light + weakly coupled

1/Coupling 

M

vEW

LFV and new physics (2)

Unexplored

UV physics
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LFV probes across energy scales

• Decays of μ, τ (and mesons) 

46
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3.1. Phenomenology of Muonium Oscillations
In order to determine experimental observables related to Mµ � Mµ oscillations, we recall

that the treatment of the two-level system that represents muonium and antimuonium is
similar to that of meson-antimeson oscillations [1,19,20]. There are, however, several important
differences. First, both ortho- and para-muonium can oscillate. Second, the SM oscillation
probability is tiny, as it is related to a function of neutrino masses, so any experimental indication
of oscillation would represent a sign of new physics.

In the presence of the interactions coupling Mµ and Mµ, the time development of a
muonium and anti-muonium states would be coupled, so it would be appropriate to consider
their combined evolution,

|y(t)i =
✓

a(t)
b(t)

◆
= a(t)|Mµi+ b(t)|Mµi. (9)

The time evolution of |y(t)i evolution is governed by a Schrödinger-like equation,

i
d
dt

✓��Mµ(t)
↵

��Mµ(t)
↵
◆
=

✓
m � i

G
2

◆✓��Mµ(t)
↵

��Mµ(t)
↵
◆

. (10)

where
⇣

m � i G
2

⌘

ik
is a 2 ⇥ 2 Hamiltonian (mass matrix) with non-zero off-diagonal terms

originating from the DL = 2 interactions. CPT-invariance dictates that the masses and widths
of the muonium and anti-muonium are the same, so m11 = m22, G11 = G22. In what follows,
we assume CP-invariance of the DLµ = 2 interaction1. Then,

m12 = m⇤

21, G12 = G⇤

21. (11)

The off-diagonal matrix elements in Equation (11) can be related to the matrix elements of
the effective operators introduced in Section 1, as discussed in [1,19],

✓
m �

i
2

G
◆

12
=

1
2MM

⌦
Mµ|Heff|Mµ

↵
+

1
2MM

Â
n

⌦
Mµ|Heff|n

↵⌦
n|Heff|Mµ

↵

MM � En + ie
. (12)

To find the propagating states, the mass matrix needs to be diagonalized. The basis in
which the mass matrix is diagonal is represented by the mass eigenstates |Mµ1,2i, which are
related to the flavor eigenstates Mµ and Mµ as

|Mµ1,2i =
1
p

2

⇥
|Mµi ⌥ |Mµi

⇤
, (13)

where we employed a convention where CP|Mµ±i = ⌥|Mµ±i. The mass and the width
differences of the mass eigenstates are

Dm ⌘ M1 � M2, DG ⌘ G2 � G1. (14)

Here, Mi (Gi) are the masses (widths) of the physical mass eigenstates |Mµ1,2i.
It is interesting to see how the Equation (12) defines the mass and the lifetime differences.

Since the first term in Equation (12) is defined by a local operator, its matrix element does not
develop an absorptive part, so it contributes to m12, i.e., the mass difference. The second term
contains bi-local contributions connected by physical intermediate states. This term has both
real and imaginary parts and thus contributes to both m12 and G12.
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     (K →πμe;     B → Kμτ, Kμe;   Bs → μτ, μe,  quarkonia , … not discussed in detail here)
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• Decays of μ, τ (and mesons) 
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Figure 1. – Limit on the branching ratio of flavour violating muon decays as a function of the
year. The three main clusters correspond to the usage of cosmic ray muons (until the 1950s),
stopped pion beams (until the 1970s) and stopped muon beams. Presently the best limit is that
on the µ+

! e+� decay set by the MEG experiment [49].

searching for Charged Lepton Flavour Violation (CLFV) is the aim of the present review.
We first give a theoretical introduction to set the stage and to see in a more formal and
detailed way what we mentioned above, as well as to discuss how and why Lepton Flavour
can be violated in extensions of the Standard Model: what, in other words, makes CLFV
processes so sensitive to new physics.

We will then review the general aspects of the experimental searches and discuss
some of the present and planned experiments with particular emphasis on the transition
between the first and the second family of leptons. To this class, in fact, belong the
three most searched modes – µ+

! e+� (“mu-to-e-gamma”), µ�N ! e�N (“mu-e-
conversion”), and µ+

! e+e�e+ (“mu-to-three-e”) – due to the copious availability of
the parent particle in the cosmic radiation first and at dedicated accelerators afterwards.
The history of the limit on the probability of these processes is shown in Figure 1, which
starts with the first experiment performed by Hinks and Pontecorvo in 1947 [259]. They
stopped cosmic ray muons in a lead absorber and measured the coincidence between
signals from two Geiger-Müller counters: having seen no such coincidence they gave as
a limit essentially the inverse of the number of observed muons. The limits on the three
processes improved as artificial muons were produced, stopping pion beams first (until
the 1970s) and starting directly with muon beams afterwards.

These experiments give the best constraints to date to possible extensions of the Stan-
dard Model inducing CLFV, therefore they play a prominent role in this review. There
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3.1. Phenomenology of Muonium Oscillations
In order to determine experimental observables related to Mµ � Mµ oscillations, we recall

that the treatment of the two-level system that represents muonium and antimuonium is
similar to that of meson-antimeson oscillations [1,19,20]. There are, however, several important
differences. First, both ortho- and para-muonium can oscillate. Second, the SM oscillation
probability is tiny, as it is related to a function of neutrino masses, so any experimental indication
of oscillation would represent a sign of new physics.

In the presence of the interactions coupling Mµ and Mµ, the time development of a
muonium and anti-muonium states would be coupled, so it would be appropriate to consider
their combined evolution,

|y(t)i =
✓

a(t)
b(t)

◆
= a(t)|Mµi+ b(t)|Mµi. (9)

The time evolution of |y(t)i evolution is governed by a Schrödinger-like equation,

i
d
dt

✓��Mµ(t)
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��Mµ(t)
↵
◆
=

✓
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G
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◆✓��Mµ(t)
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��Mµ(t)
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◆

. (10)

where
⇣

m � i G
2

⌘

ik
is a 2 ⇥ 2 Hamiltonian (mass matrix) with non-zero off-diagonal terms

originating from the DL = 2 interactions. CPT-invariance dictates that the masses and widths
of the muonium and anti-muonium are the same, so m11 = m22, G11 = G22. In what follows,
we assume CP-invariance of the DLµ = 2 interaction1. Then,

m12 = m⇤

21, G12 = G⇤

21. (11)

The off-diagonal matrix elements in Equation (11) can be related to the matrix elements of
the effective operators introduced in Section 1, as discussed in [1,19],
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i
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G
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MM � En + ie
. (12)

To find the propagating states, the mass matrix needs to be diagonalized. The basis in
which the mass matrix is diagonal is represented by the mass eigenstates |Mµ1,2i, which are
related to the flavor eigenstates Mµ and Mµ as

|Mµ1,2i =
1
p

2

⇥
|Mµi ⌥ |Mµi

⇤
, (13)

where we employed a convention where CP|Mµ±i = ⌥|Mµ±i. The mass and the width
differences of the mass eigenstates are

Dm ⌘ M1 � M2, DG ⌘ G2 � G1. (14)

Here, Mi (Gi) are the masses (widths) of the physical mass eigenstates |Mµ1,2i.
It is interesting to see how the Equation (12) defines the mass and the lifetime differences.

Since the first term in Equation (12) is defined by a local operator, its matrix element does not
develop an absorptive part, so it contributes to m12, i.e., the mass difference. The second term
contains bi-local contributions connected by physical intermediate states. This term has both
real and imaginary parts and thus contributes to both m12 and G12.

Test
Test
Test
Test
Test
Test

Mµ �Mµ µ ! ea

LEFT = LSM +
X

d�5,n

C(d)
n

⇤d�4
O(d)

n

LEFT = LSM +
X

d�5,n

C(d)
n O(d)

n

⇤d�4

LEFT = LSM +
X

d�5,n

O(d)
n

⇤d�4
n

VCKM ⇠

0

@
1 O(�) O(�3)

O(�) 1 O(�2)
O(�3) O(�2) 1

1

A

� ⇠ 0.2

VCKM ⇠

0

@
1 � �3

� 1 �2

�3 �2 1

1

A

YU ⇠

0

@
0 0 0
0 0 0
0 0 1

1

A

YD ⇠

0

@
0 0 0
0 0 0
0 0 0.025

1

A

LBLV �
C

(5)

⇤
[`H`H] +

X

i

C
(6)
i

⇤2
[qqq`]i +

X

k

C
(7)
k

⇤3
[q̄q``H]k ...+

X

m

C
(9)
m

⇤5
[qqqqqq]m +

X

n

C
(9)
n

⇤5
[q̄qq̄q``]n

1

     (K →πμe;     B → Kμτ, Kμe;   Bs → μτ, μe,  quarkonia , … not discussed in detail here)



LFV probes across energy scales

• Decays of μ, τ (and mesons) 

46

Universe 2022, 8, 169 4 of 15

3.1. Phenomenology of Muonium Oscillations
In order to determine experimental observables related to Mµ � Mµ oscillations, we recall

that the treatment of the two-level system that represents muonium and antimuonium is
similar to that of meson-antimeson oscillations [1,19,20]. There are, however, several important
differences. First, both ortho- and para-muonium can oscillate. Second, the SM oscillation
probability is tiny, as it is related to a function of neutrino masses, so any experimental indication
of oscillation would represent a sign of new physics.

In the presence of the interactions coupling Mµ and Mµ, the time development of a
muonium and anti-muonium states would be coupled, so it would be appropriate to consider
their combined evolution,

|y(t)i =
✓

a(t)
b(t)

◆
= a(t)|Mµi+ b(t)|Mµi. (9)

The time evolution of |y(t)i evolution is governed by a Schrödinger-like equation,
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where
⇣

m � i G
2

⌘

ik
is a 2 ⇥ 2 Hamiltonian (mass matrix) with non-zero off-diagonal terms

originating from the DL = 2 interactions. CPT-invariance dictates that the masses and widths
of the muonium and anti-muonium are the same, so m11 = m22, G11 = G22. In what follows,
we assume CP-invariance of the DLµ = 2 interaction1. Then,

m12 = m⇤

21, G12 = G⇤

21. (11)

The off-diagonal matrix elements in Equation (11) can be related to the matrix elements of
the effective operators introduced in Section 1, as discussed in [1,19],
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To find the propagating states, the mass matrix needs to be diagonalized. The basis in
which the mass matrix is diagonal is represented by the mass eigenstates |Mµ1,2i, which are
related to the flavor eigenstates Mµ and Mµ as

|Mµ1,2i =
1
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2

⇥
|Mµi ⌥ |Mµi

⇤
, (13)

where we employed a convention where CP|Mµ±i = ⌥|Mµ±i. The mass and the width
differences of the mass eigenstates are

Dm ⌘ M1 � M2, DG ⌘ G2 � G1. (14)

Here, Mi (Gi) are the masses (widths) of the physical mass eigenstates |Mµ1,2i.
It is interesting to see how the Equation (12) defines the mass and the lifetime differences.

Since the first term in Equation (12) is defined by a local operator, its matrix element does not
develop an absorptive part, so it contributes to m12, i.e., the mass difference. The second term
contains bi-local contributions connected by physical intermediate states. This term has both
real and imaginary parts and thus contributes to both m12 and G12.
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Figure 3: Summary of upper limits on LFV processes in ⌧ decays.
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3.1. Phenomenology of Muonium Oscillations
In order to determine experimental observables related to Mµ � Mµ oscillations, we recall

that the treatment of the two-level system that represents muonium and antimuonium is
similar to that of meson-antimeson oscillations [1,19,20]. There are, however, several important
differences. First, both ortho- and para-muonium can oscillate. Second, the SM oscillation
probability is tiny, as it is related to a function of neutrino masses, so any experimental indication
of oscillation would represent a sign of new physics.

In the presence of the interactions coupling Mµ and Mµ, the time development of a
muonium and anti-muonium states would be coupled, so it would be appropriate to consider
their combined evolution,

|y(t)i =
✓

a(t)
b(t)

◆
= a(t)|Mµi+ b(t)|Mµi. (9)

The time evolution of |y(t)i evolution is governed by a Schrödinger-like equation,

i
d
dt
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=
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↵
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↵
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. (10)

where
⇣

m � i G
2

⌘

ik
is a 2 ⇥ 2 Hamiltonian (mass matrix) with non-zero off-diagonal terms

originating from the DL = 2 interactions. CPT-invariance dictates that the masses and widths
of the muonium and anti-muonium are the same, so m11 = m22, G11 = G22. In what follows,
we assume CP-invariance of the DLµ = 2 interaction1. Then,

m12 = m⇤

21, G12 = G⇤

21. (11)

The off-diagonal matrix elements in Equation (11) can be related to the matrix elements of
the effective operators introduced in Section 1, as discussed in [1,19],
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To find the propagating states, the mass matrix needs to be diagonalized. The basis in
which the mass matrix is diagonal is represented by the mass eigenstates |Mµ1,2i, which are
related to the flavor eigenstates Mµ and Mµ as

|Mµ1,2i =
1
p

2

⇥
|Mµi ⌥ |Mµi

⇤
, (13)

where we employed a convention where CP|Mµ±i = ⌥|Mµ±i. The mass and the width
differences of the mass eigenstates are

Dm ⌘ M1 � M2, DG ⌘ G2 � G1. (14)

Here, Mi (Gi) are the masses (widths) of the physical mass eigenstates |Mµ1,2i.
It is interesting to see how the Equation (12) defines the mass and the lifetime differences.

Since the first term in Equation (12) is defined by a local operator, its matrix element does not
develop an absorptive part, so it contributes to m12, i.e., the mass difference. The second term
contains bi-local contributions connected by physical intermediate states. This term has both
real and imaginary parts and thus contributes to both m12 and G12.
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Figure 3. Current bounds and future projections for di↵erent couplings Fi of an e↵ectively massless
ALP, also reported in Table 1. On the lower axis we indicate the corresponding values for the
e↵ective axion mass defined by mi,e↵ = 4.7 eV ⇥ 106 GeV/Fi.

on fa are several order of magnitude below the ranges shown in Figs. 1 and 2,5 they are

stringent enough to e↵ectively rule out the LFV ALP explanations of possible deviations

in (g � 2)e and (g � 2)µ [54, 55, 60].

In the numerical analyses throughout the paper all the axion couplings are assumed

to be real to simplify the discussion. The interpretations of the present LFV experimen-

tal results and future projections in terms of bounds on F`i`j are summarized in Fig. 1,

assuming all the lepton couplings in Eq. (2.1) to be O(1). Fig. 2 shows instead the same

constraints for the case when only a single LFV coupling is taken to be nonzero. In Figs. 1

and 2 we also show the typical reach of astrophysical bounds on the ALP decay constant

coming from star cooling and SN1987A observations (see Sec. 6.1 for details). In Table 1

and Fig. 3 we summarize the current best bounds and future projections for an e↵ectively

massless ma, i.e. lighter than the typical mass resolution of the experiments considered

here. This is the ALP mass range that applies to most of the concrete models discussed in

Sec. 7. In the subsequent sections we discuss in detail the observables and the experiments

from which these constraints were derived.
5For heavier ALPs, ma & mµ, we can integrate out the ALP to generate the muonium-antimuonium

oscillation EFT operators. Translating the results of Ref. [59] to our notation gives

1
1.9 TeV

>

����
1

FA
µe

± 1
FV
µe

����

✓
mµ

ma

◆
,

1
3.8 TeV

>

����
1

(FA
µe)2

� 1
(FV

µe)2

����
1/2 ✓mµ

ma

◆
. (2.11)

The constraints for light ALP, ma . mµ, are obtained by taking mµ/ma ! 1 in the two expressions above

(see also similar results for heavy meson mixings in the limit of light ALP in Ref. [23]). In the future these

bounds could be improved for ma few GeV at Belle II by searching for e+e� ! eeµµ events [60].

– 9 –

BR(lα → lβ a) ~ 
((vew)2/(mαFαβ))2 

Calibbi-Redigolo-Ziegler-
Zupan

2006.04795

• New physics mass scale through any process
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CLFV phenomenology

Each model generates a specific pattern of operators 
→ multiple CLFV measurements needed to extract the underlying physics 
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• Relative strength of operators ([CD]eμ vs [CS]eμ… ) through μ →3e  versus           
μ →eγ  versus  μ →e conversion  ⇒  Mediators,  mechanism  

• New physics mass scale through any process
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CLFV phenomenology

Each model generates a specific pattern of operators 
→ multiple CLFV measurements needed to extract the underlying physics 
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• Relative strength of operators ([CD]eμ vs [CS]eμ… ) through μ →3e  versus           
μ →eγ  versus  μ →e conversion  ⇒  Mediators,  mechanism  

• Flavor structure of couplings  ([CD]eμ vs [CD]τμ…) through  μ → e versus        τ 
→ μ  versus  τ → e  ⇒  Sources of flavor breaking

• New physics mass scale through any process
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• Extract info on effective couplings by comparing μ →e  to  μ →eγ and through 
target-dependence of μ →e conversion

μ-e sector: diagnosing tools (1)

51

€ 

B(µ → e,Z)
B(µ → eγ)

O(α/π)

Z

Dipole dominance

2

Introduction. Lepton flavor violation (LFV) has
been identified long ago as an excellent probe of physics
beyond the Standard Model (SM) [1]. Several experi-
ments will soon increase the sensitivity in many chan-
nels by orders of magnitude. In the muon sector, the
most promising LFV signatures are µ ! e� (probed
by the MEG II experiment [2]), µ ! eeē (Mu3e [3]),
and µ-to-e conversion in nuclei (DeeMe [4], COMET [5],
and Mu2e [6]). Mu2e in particular aims to reach a
µ� + 27

13Al ! e� + 27
13Al single-event sensitivity of 3 ⇥

10�17, roughly four orders of magnitude beyond existing
bounds [6, 7]. The potential upgrade Mu2e-II at FNAL
aims to improve Mu2e’s sensitivity by yet another order
of magnitude [8, 9].

Theoretical motivations. Theoretical motivation
for LFV is plentiful [10]; most notably, the observation of
neutrino oscillations already proved that lepton flavor is
not conserved! The absence of LFV in the SM is acciden-
tal because of the minimal particle content. Extending
the SM by new particles then often leads to LFV unless
new symmetries are imposed [11]. Such extensions are
well motivated as explanations for neutrino masses or the
hierarchy problem and might even be linked to hints for
new physics in the muon’s magnetic moment [12, 13] or in
leptonic B-meson decays [14, 15]. Correspondingly, the
non-observation of LFV at upcoming experiments would
put strong constraints on many models, including super-
symmetric extensions, and provide critical information
about our fundamental understanding of nature [10].

Mu2e(-II)’s reach makes it indirectly sensitive to very
heavy new particles. In an e↵ective-field-theory approach
heavy particles match onto non-renormalizable operators
that are suppressed by powers of a scale ⇤ that is related
to the large masses. For example, a single dimension-six
LFV operator ē�↵PLµ d̄�↵d/⇤2 would induce a µ-to-e
conversion rate in aluminium of order [16]

�(µ�Al ! e�Al)

�(µ capture)
' 3⇥ 10�18

✓
1.5⇥ 107 GeV

⇤

◆4

,

which means that Mu2e-II is sensitive to new particles as
heavy as 104 TeV, far out of reach of any currently pro-
posed collider! Mu2e-II will of course also be sensitive
to many other operators and models and provide infor-
mation complementary to the results of Mu3e and MEG
II [16, 17]. In the event of an observation of LFV in any
of these experiments the others will help to pin down the
underlying new physics responsible for it.

Stopping target. Mu2e(-II) will use 27
13Al as a stop-

ping target, but can also study conversions in a di↵erent
material in case a signal is observed. This requires ded-
icated studies to analyze not only the ideal experimen-
tal properties a target should have (such as the e↵ective
muon lifetime and capture rate) but also to maximize
complementarity with the aluminium target. Using dif-
ferent target materials opens the possibility to probe the
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FIG. 1: Z dependence of µ ! e conversion rates for some
example scenarios taken from Refs. [18, 20].

(A,Z) and nuclear-spin dependence of the µ-to-e conver-
sion rate and thus distinguish underlying models.

Calculations of the Z-dependence of di↵erent operators
have been performed, e.g. in Refs. [18, 19]. Dedicated
studies on how to distinguish new physics operators with
di↵erent targets can be found in Refs. [17, 20], concluding
that it is best to study one light (e.g. Al) and one heavy
nucleus (e.g. Pb or Au), as shown in Fig. 1. In Mu2e(-
II) such heavy nuclei are di�cult because the muon life-
time goes down drastically (from 864 ns in Al to 75 ns in
Pb [21]) and thus worsens the pion background. Using
two light nuclei still allows to distinguish operators but
requires better precision [20]. Ref. [17] points out that
Lithium 7

3Li as a second target still has good discrimina-
tory power despite being light, making it a worthwhile
target candidate to study in better detail.

Most studies focus on coherent spin-independent (SI)
µ ! e conversion, featuring a welcome ⇠ A2 enhance-
ment in the rate. However, there exist µeqq operators
that lead to spin-dependent (SD) conversion [22, 23]. In-
cluding higher-order corrections these operator will al-
ways also induce SI µ ! e conversion that can then often
dominate due to the A2 enhancement. Still, it is in prin-
ciple possible that SD dominates over SI, a possibility
that can be studied using target nuclei of di↵erent spin.
Aluminium carries spin J = 5/2 and is thus sensitive to
both SI and SD processes. In case of a positive signal on
Al one would then need to measure µ ! e on a light nu-
cleus with di↵erent spin in order to distinguish SD from
SI [23]; heavy nuclei are unlikely to be sensitive to SD
because the higher-order—but A2-enhanced—SI e↵ects
should dominate. Titanium is a good choice here because
it is light and comes in isotopes of di↵erent spin. 48

22Ti
has spin 0 and a natural abundance of 74%; SI operators
would induce roughly the same rate as in Al, whereas
SD would lead to a vanishing rate. In the latter case,
one could enrich the target with 47

22Ti or
49
22Ti, both of

Z

https://www.snowmass21.org/docs/files/
summaries/RF/ SNOWMASS21-
RF5_RF0-TF6_TF0_Heeck-043.pdf 

Kitano-Koike-Okada hep-ph/0203110,    VC-Kitano-Okada-Tuzon 0904.0957,   Heek-Szafron-Uesaka 2203.00702, …  

γ

μ →eγ

•  μ →eγ and μ →e conversion probe different combinations of operators

    Discriminating power of μ → eγ and μ → e conversion

•  In principle, by measuring the target dependence of μ→e conversion (and 
 ratio to μ→eγ BR) we can infer the relative strength of effective operators
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μ-e sector:  h vs μ decays
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VC, Fuyuto, Ramsey-Musolf, Rule 2203.09547 

BR(μ→e, Al) / BR(μ→eγ) = 8.7(3) 10-3

BR(μ→e,Ti) / BR(μ→e,Al) = 1.5(1)

• μ→eγ is currently probing |Yμe |~ 10-6                          

(BR(h→μe) < 10-9) 

• Correlated signals in μ→e transitions** 

Harnik-Kopp-Zupan  1209.1397, … 

• Illustration: Higgs-mediated LFV,  
e.g. from dim-6 operator 

 (See also Crivellin et al. 1404.7134)    
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** Included NLO chiral EFT corrections in computation of 
conversion rate.  

For NR nuclear EFT approach see  Rule et al,  2109.13503
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 (See also Crivellin et al. 1404.7134)    

• Muon decays provide clean probe of  LFV Higgs couplings! 



• Smaller samples of taus compared to muons ⇒ BRτ ~10-8 while BRμ ~10-13  

53

• Well motivated flavor-breaking patterns (leptonic MFV, GUTs, U(2) symmetries, …) suppress μ → e 
compared to τ → μ:  

Leptonic MFV:            BR(μ → eγ) / BR(τ → μγ) ~ s132 ~ 10-2

GUT models:             BR(μ → eγ) / BR(τ → μγ)  ~  |Vus|6  ~ 10-4

Barbieri-Hall-Strumia, hep-ph/9501334

VC-Grinstein-Isidori-Wise,  hep-ph/0507001,  hep-ph/0608123, …  

Probing the flavor-breaking pattern: μ vs τ

• This underlies the importance of searches in multiple channels 

https://arxiv.org/abs/hep-ph/9501334
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• ALPs:  Axion-Like Particles

• BNV:  Baryon Number Violation 

• CC:  (weak) charged current

• CKM: Cabibbo-Kobayashi-Maskawa

• CP: Charge-Parity

• CPV: CP Violation

• EDM: Electric Dipole Moment

• EFT: Effective Field Theory 

• FCNC: Flavor Changing Neutral Currents

• LEFT: Low Energy EFT (below the weak scale)

• LFU: Lepton Flavor Universality 

• LFV: Lepton Flavor Violation  

• LNV: Lepton Number Violation     

• NC: (weak) neutral current

• RGEs:  Renormalization Group Equations

• SMEFT: Standard Model EFT

• UV: ultraviolet                   

55
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Backup:  methods
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Renormalization

• Use dimensional regularization (define theory in d=4-ε dims)

• Dimensionless action integral → gauge couplings acquire mass dimension ε/2

• Introduce arbitrary dimensionful scale μ (renormalization scale) to work with 
dimensionless couplings:  g →  με/2 g

• The scale μ appears only in logarithms (με = 1 + ε log(μ) + ...),  so it cannot upset 
EFT power counting (no powers of  μ/Λ appear)  

• Physics does not depend on μ. 

• Renormalization:  UV divergences appear as poles in ε.   Subtract only the 1/εn  
pole terms (minimal subtraction) 
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Renormalization Group “Running” 

• RGEs: exploit the fact that physics does not depend on the renormalization scale

- Bare operators do not depend on μ

- Physical amplitudes do not depend on μ
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Chiral symmetry
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Chiral symmetry

• For mq = 0,  invariant under independent U(3) transformations of left- 
and right-handed quarks:  L,R ∈ SU(3)

Chiral group G
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Chiral symmetry

• Symmetry is broken explicitly by mq ≠0 and “spontaneously”

• For mq = 0,  invariant under independent U(3) transformations of left- 
and right-handed quarks:  L,R ∈ SU(3)
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SSB of chiral SU(3)

• Goldstone’s theorem:  massless states appear in the spectrum, in one-to-
one correspondence with the broken generators.  Identified π,K,η 

• Empirical & theoretical evidence of breaking pattern 

Figure from M. Creutz 
1103.3304 

• Vector subgroup SU(3)V  (L=R) unbroken and 
symmetry is approximately manifest in the QCD 
spectrum

• Axial generators broken (no parity doublets, 
pseudoscalar mesons are the lightest hadrons)



Low-energy EFT for GBs 

• Use  EFT methods to analyze the low-energy dynamics: 

• Identify relevant d.o.f:  GBs plus possibly matter fields 

• Write down all interactions consistent with chiral symmetry 

• Order interactions according to power counting  

Relevant ratio of scales (EFT expansion parameter): E/Λ,  Mπ,K/Λ

Λ:  scale of lowest QCD resonances ~ O(1 GeV) 

• At low-E,  the only d.o.f. are fluctuations along the vacuum manifold 
(Goldstone modes) 

• Even though Mπ,K,η≠ 0 (due to mq ≠ 0), π,K,η are still the lightest hadrons
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Describes low-energy interactions of light PS mesons (π,K,η), nucleons 
(n,p) and other light particles (e, μ, ν, γ)     

Chiral perturbation theory (1) 

• Special role of π,K,η: Goldstone bosons associated with spontaneous breaking 
of chiral symmetry  (symmetry broken explicitly by mq) 

SU(3)L x SU(3)R     →     SU(3)V

• Even in presence of quark masses, π,K,η are the lightest hadrons (can integrate out 
heavy states). Interactions dictated by spontaneous and explicit χSB 

• The symmetry dictates that GB have derivative interactions with all fields: GBs 
interact weakly at low energy.  GBs determine the leading long-distance 
interactions among nucleons (multi N theory = chiral EFT) 

62



• In ChPT / chiral EFT,  Lagrangian and amplitudes are expanded in  p/Λ,  Mπ,K/Λ, 
where p is the soft momentum and Λ~ GeV is the scale of QCD resonances. 

Chiral perturbation theory (2)

  - Loops: leading IR singularities, perturbative unitarity.    
    Except for NN EFT,  higher loops imply higher suppression  

- “Contact” terms, LECs:  UV div.+ finite part, encoding
  short distance (QCD) physics,  to be determined from expt.
  or via non-perturbative techniques (LQCD, dispersion relations, …).  
  As couplings in any QFT,  the LECs satisfy appropriate RGEs. 

• To a given order in the chiral expansion: 

• Counting rules for ChPT:  𝜕 ~ p,  mq ~ p2    (because MPS2 ~ B mq)

• EFT has been extended to include dynamical photons and light leptons

Weinberg ’79, Gasser-Leutwyler ’84-85,  Weinberg ’91, Jenkins-Manohar ’92,  Benard-Kaiser-Kambor-Meissner ’92  van Kolck ’94,  Kaplan-Savage-Wise ’96-98…..
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Backup: beta decays
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• Long history, starting in the 1950’s.   Modern 
approaches build upon Sirlin current algebra 
formulation from the ’60 & ‘70s  

Seng et al. 1807.10197,  Czarnecki et al, 1907.06737, Shiells 
et al. 2012.01580 

Hayen  2010.07262 , Gorchtein-Seng  2106.09185 2

Figure 1: Feynman diagrams corresponding to the amplitude
in (4) which contribute at order O(↵/⇡) to neutron � decay
and are sensitive to the hadronic scale.

We summarize in this Letter the essential features of our
analysis that lead us to these values, and defer details to
an upcoming longer paper [21].

Among the various contributions atO(↵/⇡) to the neu-
tron � decay amplitude, Sirlin established [22] that the
only one sensitive to the hadronic scale is the part in the
�W box amplitude (Fig. 1),

MV A = 2
p
2e2GFVud

Z
d4q

(2⇡)4



ūe(k)�µ(/k � /q +me)�⌫PLv⌫(k)

q2[(k � q)2 �m2
e]

M2
W

q2 �M2
W

Tµ⌫
V A

�
, (4)

involving the nucleon matrix element of the product of
the electromagnetic (EM) and the axial part of the weak
charged current

Tµ⌫
V A =

1

2

Z
d4x eiqxhp(p)|T [Jµ

em(x)J
⌫
W,A(0)]|n(p)i . (5)

After inserting the nucleon matrix element parametrized
in terms of the P -odd invariant function Tµ⌫

V A =
i✏µ⌫↵�p↵q�

2p·q T3 into the amplitude (4), the correction to the

tree level amplitude is expressed as [22]

⇤V A
�W =

↵

8⇡

Z 1

0
dQ2 M2

W

M2
W +Q2

⇥

Z i
p

Q2

�i
p

Q2

d⌫

⌫

4(Q2 + ⌫2)3/2

⇡MQ4
T3(⌫, Q

2) (6)

where after Wick rotation the azimuthal angles of the
loop momentum have been integrated over and the re-
maining integrals have been expressed in terms of Q2 =
�q2 and ⌫ = (p · q)/M . With negligible error, we assume
a common nucleon massM in the isospin symmetric limit
and we work in the recoil-free approximation. This con-
tributes to the nucleus-independent EWRC as

�V
R = 2⇤V A

�W + . . . , (7)

where the ellipses denote all other corrections insensitive
to the hadronic scale.

Marciano and Sirlin estimate ⇤V A
�W by phenomenolog-

ically treating the ⌫-integral FM.S.(Q2) ⌘
R
d⌫ . . . in the

second line of (6) as a function of Q2, and parametriz-
ing it piecewise over three domains: in the short distance
domain Q2 > (1.5 GeV)2, the leading term in the OPE
corrected by high order perturbative QCD is used; in
the long distance domain Q2 < (0.823 GeV)2, the elas-
tic nucleon with dipole form factors is used with a 10%
uncertainty; and at intermediate scales (0.823 GeV)2 <
Q2 < (1.5 GeV)2, an interpolating function inspired by
VMD is used and is assigned a generous 100% uncer-
tainty. Performing the integration over Q2 in (6) yields
their value of �V

R quoted above.
Our evaluation of ⇤V A

�W begins by first separating the
invariant amplitude T3 with respect to isosinglet and

isotriplet components of the EM current T3 = T (0)
3 +T (3)

3 .

Crossing symmetry implies T (0)
3 is odd under ⌫ ! �⌫

while T (3)
3 is even. Since the ⌫ integration measure in

(6) is odd, only T (0)
3 contributes to ⇤V A

�W . We then

write a dispersion relation in ⌫ for T (0)
3 , taking into ac-

count the physical sheet singularities. Poles at ⌫B =
±Q2/(2M) correspond to the elastic single-nucleon in-
termediate state, and branch points at ⌫⇡ = ±(m2

⇡ +
2Mm⇡ + Q2)/(2M) correspond to single pion produc-

tion thresholds. We identify the discontinuity of T (0)
3

across the cut as the �W -interference structure function,

4⇡F (0)
3 (⌫, Q2) = T (0)

3 (⌫ + i✏, Q2) � T (0)
3 (⌫ � i✏, Q2), so

that the dispersion relation reads

T (0)
3 (⌫, Q2) = �4i⌫

Z 1

0
d⌫0

F (0)
3 (⌫0, Q2)

⌫02 � ⌫2
. (8)

where F (0)
3 contains both the elastic and inelastic contri-

butions. No subtraction constant appears since T (0)
3 is an

odd function of ⌫. Only I = 1/2 intermediate states con-
tribute because the EM current is isoscalar. After insert-
ing (8) into (6), performing the ⌫-integral, and changing
the integration variable ⌫0 ! Q2/(2Mx) we obtain

⇤V A
�W =

3↵

2⇡

Z 1
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dQ2

Q2

M2
W

M2
W +Q2

M (0)
3 (1, Q2), (9)

where M (0)
3 (1, Q2) is the first Nachtmann moment of the

structure function F (0)
3 [23, 24]

M (0)
3 (1, Q2) =

4

3

Z 1

0
dx

1 + 2r

(1 + r)2
F (0)
3 (x,Q2), (10)

and r =
p
1 + 4M2x2/Q2. To estimate ⇤V A

�W , we require

the functional form of F (0)
3 depending on x and Q2, or

equivalently, W 2 = M2 + (1� x)Q2/x and Q2.
We draw attention to the fact that (9) relates [MS]’s

phenomenological function to the first Nachtmann mo-
ment

FM.S.(Q
2) =

12

Q2
M (0)

3 (1, Q2) , (11)

Gorchtein, Feng, Jin, Seng, …  
2003.09798,  2003.11264, 2102.12048,  2308.16755

• Example:  EM correction to n→p vector coupling
Larger correction, smaller error

It also affects nuclear decays

Determination of Vud from superallowed � decays

Master formula Hardy, Towner 2018

|Vud |
2 =

2984.432(3) s
F t(1 +�V

R)

with (universal) radiative corrections �V
R

Value of Vud crucially depends on �V
R :

Ref. �V
R

Marciano, Sirlin 2006 0.02361(38)

Seng, Gorchtein, Patel, Ramsey-Musolf 2018 0.02467(22)

Czarnecki, Marciano, Sirlin 2019 0.02426(32)

Seng, Feng, Gorchtein, Jin 2020 0.02477(24)

Hayen 2020 0.02474(31)

Shiells, Blunden, Melnitchouk 2021 0.02472(18)

Cirigliano, Crivellin, MH, Moulson 2022 0.02467(27)

,! main uncertainty from Regge region,

lattice QCD to improve?

Hardy, Towner 2020
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Figure 4: World data of the first Nachtmann moment
M⌫p+⌫̄p

3 (1, Q2). The red curve is the pQCD-corrected GLS
sum rule above Q2

⇡ 2 GeV2, and the blue curve is the result
of the fit for AWW and BWW in (19).

Llewellyn-Smith sum rule [36] corrected by pQCD [37],
while at low Q2, the �-resonance and the Born contri-
bution saturate the Nachtmann moment [34]. At large
W 2, the ! trajectory controls the leading behavior, and
couples to the external currents by the a1 and ⇢ mesons
(see Fig. 3b), leading to

F ⌫p+⌫̄p
R = CWW fth

m2
⇢

m2
⇢ +Q2

m2
a1

m2
a1

+Q2

✓
⌫

⌫0

◆↵!
0

. (18)

We then fit the unknown function CWW (Q2) to the data
for M⌫p+⌫̄p

3 (1, Q2) in the range Q2
 2 GeV2. Due to

the quality of the data, we choose the simple linear form

CWW (Q2) = AWW (1 +BWWQ2) (19)

and obtain AWW = 5.2± 1.5, BWW = 1.08+0.48
�0.28 GeV�2.

The result of the fit is shown by the blue curve in Fig. 4.
The solid curve corresponds to the central value of the fit,
and the dotted curve indicates the maximum variation in
M⌫p+⌫̄p

3 allowed by the errors in the fit. We do not fit
the three data points below Q2 = 0.1 GeV2 where Born
and resonance contributions dominate the GLS sum rule:
rather, we use the resonance parameters obtained in [27]
from a fit to modern neutrino data.

Finally, to obtain C�W (Q2), we require the ratio

of Nachtmann moments M (0)
3,R(1, Q

2)/M⌫p+⌫̄p
3,R (1, Q2) to

agree with the value predicted by VMD at Q2 = 0, and
the QCD-corrected parton model at Q2 = 2 GeV2. Since
the ⇢ and ! Regge trajectories are nearly degenerate [31],
the two conditions predict the same ratio [21]

M (0)
3,R(1, 0)

M⌫p+⌫̄p
3,R (1, 0)

⇡
M (0)

3,R(1, 2 GeV2)

M⌫p+⌫̄p
3,R (1, 2 GeV2)

⇡
1

36
. (20)

For the linear parametrization in Eq. (19), this implies

C�W (Q2) =
1

36
CWW (Q2) , (21)

providing us with the final piece of FR in (17).
Upon inserting our parameterization (12) for the struc-

ture function F (0)
3 into (9, 10) and performing the inte-

grations, we obtain the following contributions to ⇤V A
�W

in units of 10�3: 2.17(0) from parton+pQCD, 1.06(6)
from Born and 0.56(8) from Regge+resonance+⇡N , the
digit in parentheses indicating the uncertainty. Com-
bining them with the remaining known contributions
[MS] gives our new values, �V

R = 0.02467(22) and
|Vud| = 0.97366(15). Our reevaluation of �V

R repre-
sents a reduction in theoretical uncertainty over the pre-
vious [MS] result by nearly a factor of 2. However,
it also leads to a substantial upward shift in the cen-
tral value of �V

R and a corresponding downward shift of
|Vud| by nearly three times their quoted error, now rais-
ing tension with the first-row CKM unitarity constraint:
|Vud|

2 + |Vus|
2 + |Vub|

2 = 0.9983(4).
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Figure 5: Log-linear plot of
M2

W
M2

W+Q2M
(0)
3 (1, Q2) as a function

of Q2. The blue curve is the result of our parameterization
in (12), and the red curve is the piecewise parametrization
used by [MS]. For a given parametrization, the contribution
to ⇤V A

�W is proportional to the area under the curve, see (9).

We pause to comment on the origin of the large shift
in the central value for �V

R with respect to [MS]. In Fig.

5 we plot the integrand M2
W

M2
W+Q2M

(0)
3 (1, Q2) of Eq. (9)

as a function of Q2. In solid blue, we show the re-
sult of our parametrization (12) after integrating over
x. In dashed red, we show the piecewise parametriza-
tion by [MS] obtained with the help of (11). The dis-
continuity in their parametrization at Q2 = (1.5 GeV)2

arises from their choice of matching the Q2 integrals of
pQCD and the interpolating function over the short dis-
tance domain, rather than matching the functions them-

• Recent new development:  dispersive approach to the 
non-perturbative input (γ-W box) for neutron,  pion,  
and kaon semileptonic decays & connection to LQCD

Lattice QCD 
calculation confirms 

this behavior 
 2308.16755

β decays: pre-EFT radiative corrections 
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Vud from nuclear 0+ →0+ beta decays
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]

log2
f t

=
G2

Fm5
e |Vud |2

p3 (1+DV
R +d 0

R +dNS �dC) (1)

where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]

log2
f t

=
G2

Fm5
e |Vud |2

p3 (1+DV
R +d 0

R +dNS �dC) (1)

where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]

log2
f t

=
G2

Fm5
e |Vud |2

p3 (1+DV
R +d 0

R +dNS �dC) (1)

where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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|Vud| from 0+ → 0+: Corrections
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ΔR Universal radiative correction
 High-energy γW box + ZW box amplitudes
δR′ Long-distance radiative correction
 One-photon bremsstrahlung + low-energy γW box
δC Coulomb correction
 Charge-dependent 

mismatch between 
parent and daughter 
analog states (members 
of same isospin triplet) 

δNS Nuclear structure
 O(α) axial photonic
 contributions

Consistency check: CVC demands equivalence of Ft values after corrections 

Single nucleon 
`γ-W box’

Point-like nucleus 
‘outer corrections’

(Z, (Ee)max)
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FIG. 3. (a) In the top panel are plotted the uncorrected experi-
mental f t values for the 15 precisely known superallowed transitions
as a function of the charge on the daughter nucleus. (b) In the bottom
panel, the corresponding Ft values are given; they differ from the f t
values by the inclusion of the correction terms δ′

R, δNS, and δC . The
horizontal gray band gives one standard deviation around the average
Ft value. All transitions are labeled by their parent nuclei.

be established with high precision. Relatively imprecise mea-
surements of the tiny Gamow-Teller branches, which must be
subtracted from 100%, are all that is required.

Not so for the decays of the Tz = −1 parents. They are
even-even nuclei that decay to odd-odd daughters, where 1+

states are available at low excitation energy. The Gamow-
Teller transitions to these states turn out to be strong enough to
compete with, and often surpass, the superallowed transitions.
This raises a serious experimental challenge: the intensity
of the Gamow-Teller branches—or the superallowed branch
itself—must be measured directly with high relative precision.
Considerable progress has been made in the last few years
in improving the measurements of superallowed branching
ratios from Tz = −1 parents, but they still cannot match the
precision of the Tz = 0 parents’ branching ratios.

The eight cases included in Fig. 5 are much more limited
by experiment. All but 66As and 70Br are Tz = −1 parents,
which will require very difficult measurements to arrive at
precise branching ratios. All but 18Ne and 30S are quite far
from stability and will be difficult to produce in sufficient
quantity for high statistical precision. Overall, the two most
advanced candidates are 18Ne and 30S but even they will

FIG. 4. Summary histogram of the fractional uncertainties at-
tributable to each experimental and theoretical input factor that
contributes to the final Ft values for the 15 precisely measured
superallowed transitions used in the Ft-value average. The two bars
cut off with jagged lines at about 0.20% actually rise to 0.23%
for 62Ga and 0.29% for 74Rb. The bars for δ′

R and δC-δNS include
provision for systematic uncertainty as well as statistical. See text.
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FIG. 5. Summary histogram of the fractional uncertainties at-
tributable to each experimental and theoretical input factor that
contributes to the final Ft values for the eight tabulated superallowed
transitions not known precisely enough to contribute to the Ft-value
average. The three bars cut off with jagged lines at about 4.0%
indicate that no useful experimental measurement has been made of
those parameters. The bars for δ′

R and δC-δNS include provision for
systematic uncertainty as well as statistical. See text.
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            Lots of activity 

• New analysis of nuclear weak form factors and phase space f

• New approaches towards structure dependent corrections δC,NS 

• Controlled uncertainties will be achieved for a range of  A=10, 14, …    

Gorchtein, Seng  2311.00044       
and references therein 
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conserved vector current (CVC) hypothesis, the experimental
f t value for such a transition should be directly related to the
vector coupling constant, GV , a fundamental constant, which
must be the same for all such transitions.

In practice, the f t values are subject to several small
(∼1%) correction terms. It is convenient to combine some
of these terms with the f t value and define a “corrected” Ft
value, which replaces f t in satisfying the CVC expectations.
Thus, we write [7]

Ft ≡ f t (1 + δ′
R)(1 + δNS − δC ) = K

2G2
V

(
1 + "V

R

) , (1)

where K/(h̄c)6 = 2π3h̄ ln 2/(mec2)5 = 8120.27648(26) ×
10−10 GeV−4s, GV is the vector coupling constant for
semileptonic weak interactions, δC is the isospin-symmetry-
breaking correction, and "V

R is the transition-independent part
of the radiative correction. The terms δ′

R and δNS comprise
the transition-dependent part of the radiative correction, the
former being a function only of the electron’s energy and the
Z of the daughter nucleus, while the latter, like δC , depends
in its evaluation on the details of nuclear structure. From
this equation, it can be seen that each measured transition
establishes an individual value for GV and, if GV is not
renormalized in the nuclear medium as CVC asserts it is not,
all such values—and all the Ft values themselves—should be
identical within uncertainties, regardless of the specific nuclei
involved.

What makes the study of superallowed 0+ → 0+ β decays
so compelling is that their precisely determined Ft values
have proved indeed to be consistent with one another. Thus
their average yields an even more precise value for the vector
coupling constant GV , which in turn can be used to determine
Vud via the relation

Vud = GV /GF , (2)

where GF is the well-known weak-interaction constant for
muon decay. Once the value of Vud is established it can be
used to test the top-row unitarity of the CKM matrix, i.e.,
asking whether V 2

ud + V 2
us +V 2

ub equals 1. For the past decade
and more, the answer has consistently been “yes” but re-
cent theoretical developments have made the answer today
more ambiguous. We will present the current status of CKM
unitarity.

Our procedure in this paper is to examine all experimental
data related to 23 superallowed transitions, comprising all
those that have been well studied, together with other cases
that are now coming under scrutiny after becoming accessi-
ble to precision measurement in relatively recent years. The
methods used in data evaluation are presented in Sec. II along
with tables of all the relevant world data. The calculations and
corrections required to extract Ft values from these data are
described and applied in Sec. III. Then in Sec. IV we examine
the resultant Ft values, their consistency, and their constituent
uncertainties. Finally, in Sec. V we explore the impact of these
results on two weak-interaction issues: CKM unitarity and
the possible existence of scalar interactions. This is much the
same pattern as we followed in our three most recent reviews
[5–7].

II. EXPERIMENTAL DATA

The f t value that characterizes any β transition depends
on three measured quantities: the total transition energy QEC,
the half-life t1/2 of the parent state, and the branching ratio
R for the particular transition of interest. The QEC value is
required to determine the statistical rate function, f , while
the half-life and branching ratio combine to yield the partial
half-life, t . In Tables I–VII we present the measured val-
ues of these three quantities and supporting information for
a total of 23 superallowed 0+ → 0+ transitions. Of these
23 transitions, 15 have been fully characterized by precise
measurements; their f t values are currently known with a
relative precision of ±0.23% or better, and they all play a
role in important weak-interaction tests to be described in later
sections.

The remaining eight transitions are much less well known
for now, but they are accessible to experiment and their data
could be significantly improved in future. We include them for
completeness and to encourage their further study. There are,
of course, even more 0+ → 0+ transitions that are known or
anticipated to exist. However, we omit them entirely because
their parents are exotic enough that we consider it unlikely
they could be precisely characterized in the foreseeable future.

A. Evaluation principles

In our treatment of the data, we considered all measure-
ments formally published or accepted before the end of March
2020. We scrutinized all the original experimental reports in
detail. Where necessary and possible, we used the information
provided there to correct the results for calibration data that
have improved since the measurement was made. All cases
for which such a correction has been made are recorded in
Table VI. If corrections were evidently required but insuffi-
cient information was provided to make them, then the results
were rejected; these are noted in Table VII.

Of the surviving results, only those with (updated) uncer-
tainties that are within a factor of 10 of the most precise
measurement for each quantity were retained for averaging in
the tables. Each datum appearing in the tables is attributed
to its original journal reference via an alphanumeric code
comprising the initial two letters of the first author’s name
and the two last digits of the publication date. These codes
are correlated with the actual reference numbers [8–181] in
Table VIII.

The statistical procedures we have followed in analyzing
the tabulated data are based on those used by the Particle Data
Group in their periodic reviews of particle properties, e.g.,
see Ref. [182], and adopted by us in earlier surveys [1–7] of
superallowed 0+ → 0+ β decay. In the tables and through-
out this work, “error bars” and “uncertainties” always refer
to plus-and-minus one standard deviation (68% confidence
level). For a set of N uncoupled measurements, xi ± δxi, of
a particular quantity, a Gaussian distribution is assumed, the
weighted average being calculated according to:

x ± δx =
∑

i wixi∑
i wi

±
(∑

iwi
)−1/2

, (3)
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6.2 Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104), the decay rate can be written as

�n =
G

2
F
|Vud|

2
m

5
e

2⇡3

�
1 + 3�2

�
· f0 ·

�
1 +�f

�
·
�
1 +�R

�
, (107)

where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =

ˆ
x0

1
w(x, x0)FNR (�(x)) (1 + �recoil (xme)) dx, (109)

1 +�R = [gV (µ�)]
2

✓
1 +

´
x0

1 w(x, x0)FNR (�(x)) (1 + �recoil (xme)) �RC (xme, µ�) dx

f0(1 +�f )

◆
, (110)

where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2

 
1 +

↵ (µ�)

2⇡

 
3

2
ln

µ
2
�

m2
e

+
5

4
+ ĝ (E0)

!!
� 1, (113)

where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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• To separate hadronic and electroweak contributions to gV (µ�), and to make contact with some of
the previous literature, we provide the fixed-order result

�R = 2⇤V

Had(µ0) +
↵

2⇡


2
⇣
1�

↵s

4⇡

⌘
ln

M
2
Z

µ2
0

+
3

2
ln

µ
2
0

m2
e

+ ĝ (E0)

�
. (114)

In the above relations, the explicit dependence on µ0 is canceled by the implicit dependence in

⇤V

Had(µ0). The hadronic physics is included in ⇤V

Had, while the two logarithms in Eq. (114), which
are proportional to the anomalous dimensions, correspond to the ratios between electroweak vs
hadronic and hadronic vs beta-decay scales.

• Our numerical result for �R is
�R = 4.044(27)%, (115)

which, apart from the uncertainty coming from gV discussed in Sect. 5.4, includes a perturbative
uncertainty of 0.005% obtained by varying the scale of the calculation µ� in the range m2

e/2  µ
2
� 

2m2
e. Our result for �R is 0.061% above the most recent evaluation [8] based on Refs. [1–6]. The

sources of this di↵erence are discussed in Section 2. Combining �f and �R in the factorization
scheme of Eq. (107) we obtain

�TOT = 7.761(27)%. (116)

Using the results from Refs. [1–6, 8], one gets �TOT = 7.735(27)%, about one � below our result.
The di↵erence is due to two competing factors in our analysis: a positive shift of +0.061% in �R

and a negative shift of �0.035% in �f .

• As a consistency check on the accuracy of the calculation and the size of cross terms (such as recoil
⇥ electromagnetic corrections), we have performed the phase-space integration in a di↵erent scheme
that does not assume factorization of FNR and �recoil, defined by

�n !
G

2
F
|Vud|

2
m

5
e

2⇡3

�
1 + 3�2

�
· f0 · (1 +�gV ) ·

✓
1 +�recoil +�C +�RC

◆
, (117)

with

�gV = [gV (µ�)]
2
� 1, (118)

�C =
1
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x0

1
w(x, x0)

"
FNR (� (x))�

 
11�
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e
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↵
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#
dx, (119)

�RC =
1

f0

ˆ
x0

1
w(x, x0) �RC (xme, µ�) dx, (120)

�recoil =
1

f0

ˆ
x0

1
w(x, x0) �recoil (xme) dx. (121)

For the numerical values in this scheme, we find �gV = 5.060(27)%, �C = 3.375%, �RC = �0.969%,
�recoil = 0.173%, leading to�TOT = 7.770%. The latter di↵ers from the factorized result by 0.009%,
consistent with its expected size of O(↵2) and the uncertainties quoted above.

Finally, we extract the CKM matrix element Vud from precise measurements of the neutron lifetime
with our updated calculation of radiative corrections and present the results in Section 2.
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3 STEYERL 12 is a detailed reanalysis of neutron storage loss corrections to the raw data
of MAMPE 89, and it replaces that value.

4WILSON 21 extract the value from the flux of n escaping the moon using data from the
Lunar Prospector Neutron Spectrometer.

5YUE 13 differs from NICO 05 in that a different and better method was used to measure
the neutron density in the fiducial volume. This shifted the lifetime by +1.4 seconds and
reduced the previously largest source of systematic uncertainty by a factor of five.

6ARZUMANOV 12 reanalyzes its systematic corrections in ARZUMANOV 00 and obtains
this corrected value.

7 IGNATOVICH 95 calls into question some of the corrections and averaging procedures
used by MAMPE 93. The response, BONDARENKO 96, denies the validity of the
criticisms.

8The NESVIZHEVSKII 92 measurement has been withdrawn by A. Serebrov.
9The BYRNE 80 measurement has been withdrawn (J. Byrne, private communication,
1990).

WEIGHTED AVERAGE
878.4±0.5 (Error scaled by 1.8)

SEREBROV 05 CNTR 0.0
PICHLMAIER 10 CNTR 1.6
STEYERL 12 CNTR 3.9
ARZUMANOV 15 CNTR 2.2
SEREBROV 18 CNTR 11.0
PATTIE 18 CNTR 0.9
EZHOV 18 CNTR 0.0
GONZALEZ 21 CNTR 3.7

χ2

      23.3
(Confidence Level = 0.0015)

874 876 878 880 882 884 886 888

neutron mean life (s)

n MAGNETIC MOMENTn MAGNETIC MOMENTn MAGNETIC MOMENTn MAGNETIC MOMENT

See the “Quark Model” review.

VALUE (µN ) DOCUMENT ID TECN COMMENT

−1.91304273±0.00000045−1.91304273±0.00000045−1.91304273±0.00000045−1.91304273±0.00000045 TIESINGA 21 RVUE 2018 CODATA value

• • • We do not use the following data for averages, fits, limits, etc. • • •

−1.91304273±0.00000045 MOHR 16 RVUE 2014 CODATA value
−1.91304272±0.00000045 MOHR 12 RVUE 2010 CODATA value
−1.91304273±0.00000045 MOHR 08 RVUE 2006 CODATA value
−1.91304273±0.00000045 MOHR 05 RVUE 2002 CODATA value

https://pdg.lbl.gov Page 4 Created: 5/31/2023 09:12

Citation: R.L. Workman et al. (Particle Data Group), Prog.Theor.Exp.Phys. 2022, 083C01 (2022) and 2023 update

WEIGHTED AVERAGE
-1.2754±0.0013 (Error scaled by 2.7)

BOPP 86 SPEC
YEROZLIM... 97 CNTR 17.7
LIAUD 97 TPC 5.5
MOSTOVOI 01 CNTR
SCHUMANN 08 CNTR
MUND 13 SPEC 0.2
BROWN 18 UCNA 0.8
MAERKISCH 19 SPEC 3.4
BECK 20 SPEC 7.5
HASSAN 21 SPEC

χ2

      35.1
(Confidence Level < 0.0001)

-1.29 -1.28 -1.27 -1.26 -1.25 -1.24

λ ≡ gA / gV
1HASSAN 21 include earlier data of DARIUS 17. The value is extracted from the angular
correlation coefficient a.

2 BECK 20 calculates this value from the measurement of the β-decay e–νe angular
correlation coefficient a.

3MAERKISCH 19 gets A = −0.11985 ± 0.00017 ± 0.00012.
4BROWN 18 gets A = −0.12054 ± 0.00044 ± 0.00068 and λ = −1.2783 ± 0.0022.
We quote the combined values that include the earlier UCNA measurements (MENDEN-
HALL 13).

5This MUND 13 value includes earlier PERKEO II measurements (ABELE 02 and
ABELE 97D).

6MOSTOVOI 01 measures the two P-odd correlations A and B, or rather SA and SB,
where S is the n polarization, in free neutron decay.

7YEROZOLIMSKY 97 makes a correction to the EROZOLIMSKII 91 value.
8 SAUL 20 quote this value of λ under the SM assumption of the Fierz term b = 0. In a
combined fit authors extract a value of λ = −1.2792 ± 0.0060.

9DARIUS 17 calculates this value from the measurement of the a parameter (see below).
Data is included in HASSAN 21.

10MENDENHALL 13 gets A = −0.11954 ± 0.00055 ± 0.00098 and λ = −1.2756 ±
0.0030. We quote the nearly identical values that include the earlier UCNA measurement
(PLASTER 12), with a correction to that result.

11This PLASTER 12 value is identical with that given in LIU 10, but the experiment is
now described in detail.

12This is the combined result of ABELE 02 and ABELE 97D.
13These experiments measure the absolute value of gA/gV only.
14KROHN 75 includes events of CHRISTENSEN 70.
15KROPF 74 reviews all data through 1972.

e− ASYMMETRY PARAMETER Ae− ASYMMETRY PARAMETER Ae− ASYMMETRY PARAMETER Ae− ASYMMETRY PARAMETER A
This is the neutron-spin electron-momentum correlation coefficient. Unless otherwise
noted, the values are corrected for radiative effects and weak magnetism. In the
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where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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given by

�R = [gV (µ�)]
2
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2
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e
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4
+ ĝ (E0)

!!
� 1, (113)

where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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• To separate hadronic and electroweak contributions to gV (µ�), and to make contact with some of
the previous literature, we provide the fixed-order result

�R = 2⇤V
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. (114)

In the above relations, the explicit dependence on µ0 is canceled by the implicit dependence in

⇤V

Had(µ0). The hadronic physics is included in ⇤V

Had, while the two logarithms in Eq. (114), which
are proportional to the anomalous dimensions, correspond to the ratios between electroweak vs
hadronic and hadronic vs beta-decay scales.

• Our numerical result for �R is
�R = 4.044(27)%, (115)

which, apart from the uncertainty coming from gV discussed in Sect. 5.4, includes a perturbative
uncertainty of 0.005% obtained by varying the scale of the calculation µ� in the range m2

e/2  µ
2
� 

2m2
e. Our result for �R is 0.061% above the most recent evaluation [8] based on Refs. [1–6]. The

sources of this di↵erence are discussed in Section 2. Combining �f and �R in the factorization
scheme of Eq. (107) we obtain

�TOT = 7.761(27)%. (116)

Using the results from Refs. [1–6, 8], one gets �TOT = 7.735(27)%, about one � below our result.
The di↵erence is due to two competing factors in our analysis: a positive shift of +0.061% in �R

and a negative shift of �0.035% in �f .

• As a consistency check on the accuracy of the calculation and the size of cross terms (such as recoil
⇥ electromagnetic corrections), we have performed the phase-space integration in a di↵erent scheme
that does not assume factorization of FNR and �recoil, defined by
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with

�gV = [gV (µ�)]
2
� 1, (118)
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�RC =
1

f0

ˆ
x0

1
w(x, x0) �RC (xme, µ�) dx, (120)

�recoil =
1

f0

ˆ
x0

1
w(x, x0) �recoil (xme) dx. (121)

For the numerical values in this scheme, we find �gV = 5.060(27)%, �C = 3.375%, �RC = �0.969%,
�recoil = 0.173%, leading to�TOT = 7.770%. The latter di↵ers from the factorized result by 0.009%,
consistent with its expected size of O(↵2) and the uncertainties quoted above.

Finally, we extract the CKM matrix element Vud from precise measurements of the neutron lifetime
with our updated calculation of radiative corrections and present the results in Section 2.
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EM = 0.0116(3),
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Result:
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us = 0.22330(35)exp(39)f+(8)IB[53]total
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NEW: Seng et al,  1910.13209, 2103.00975. 2103.4843.  2107.14708. 
2203.05217. Ma et al. 2102.12048 

OLD:  VC, Giannotti, Neufeld 0807.4607 
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Figure 8: Comparison of lattice results (squares) for f+(0) with various model estimates
based on �PT [63, 65–68] (blue circles). The black squares and grey bands indicate our
averages (77) – (79). The significance of the colours is explained in Sec. 2.

0.042 fm. The physical light-quark mass is simulated at four lattice spacings. They also
added a simulation at a small volume to study the finite-size e↵ects. The improvement of the
precision with respect to FNAL/MILC 13E is obtained mainly by an estimate of finite-size
e↵ects, which is claimed to be controlled at the level of ⇠ 0.05% by comparing two analyses
with and without the one-loop correction. The total uncertainty is largely reduced to ⇠ 0.2%.
An independent calculation of such high precision would be highly welcome to solidify the
lattice prediction of f+(0), which currently suggests a tension with CKM unitarity with the
updated value of |Vud| (see Sec. 4.4).

The result from the ETM collaboration, f+(0) = 0.9709(45)(9) (ETM 16), makes use
of the twisted-mass discretization adopting three values of the lattice spacing in the range
0.06�0.09 fm and pion masses simulated in the range 210�450 MeV. The chiral and continuum
extrapolations are performed in a combined fit together with the momentum dependence,
using both a SU(2)-�PT inspired ansatz (following Ref. [87]) and a modified z-expansion fit.
The uncertainties coming from the chiral extrapolation, the continuum extrapolation and the
finite-volume e↵ects turn out to be well below the dominant statistical error, which includes
also the error due to the fitting procedure. A set of synthetic data points, representing both
the vector and the scalar semileptonic form factors at the physical point for several selected
values of q2, is provided together with the corresponding correlation matrix.

The PACS collaboration obtained a new result for Nf =2 + 1, f+(0) = 0.9603(16)
�
+50
�48

�

(PACS 19), by creating an ensemble with the physical light-quark mass on a large lattice
volume of (10.9 fm)4 at a single spacing a = 0.085 fm [80]. Such a large lattice enables them to
interpolate f+(q2) to zero momentum transfer and study the momentum-transfer dependence

7 Updated Feb. 2023

Kaon decays and the Cabibbo Angle Anomaly – M. Moulson – CKM 2023 – Santiago de Compostela, 20 September 2023

Long-distance EM corrections
Mode-dependent corrections ΔEMKℓ to phase-space integrals IKℓ from 
EM-induced Dalitz plot modifications
• Values depend on acceptance for events with additional real photon(s)
• All recent measurements assumed fully inclusive

FlaviaNet analysis and updates used Cirigliano et al. ’08 
• Comprehensive analysis at fixed order e2p2

15

Seng et al.
JHEP 07 (2022)

Calculation of complete EW RC using hybrid current algebra and 
ChPT with resummation of largest terms to all chiral orders
• Reduced uncertainties at O(e2p4)
• Lattice evaluation of QCD contributions to γW box diagrams
• Conventional value of SEW subtracted from results for use with 

standard formula for Vus

Cirigliano et al. ’08 Seng et al. ’21

ΔEM(K0e3) [%] 0.50 ± 0.11 0.580 ± 0.016
ΔEM(K+e3) [%] 0.05 ± 0.12 0.105 ± 0.023
ΔEM(K+μ3) [%] 0.70 ± 0.11 0.770 ± 0.019
ΔEM(K0μ3) [%] 0.01 ± 0.12 0.025 ± 0.027
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• New radiative corrections based on current algebra + lattice QCD. 
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Flavianet WG,  1005.2323           Moulson 1704.04104  

Potential issue:  definition of  ‘isosymmetric QCD’ in lattice (f+(0)) vs calculations of ΔEM, IB   

Vus from kaon decays – M. Moulson – ELECTRO 2022 – Mainz Institute for Theoretical Physics, 28 October 2022

|Vus| f+(0) from world data: 2022 update
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% err BR τ Δ Int

KLe3 0.2162(5) 0.23 0.09 0.20 0.02 0.05

KLµ3 0.2165(6) 0.26 0.15 0.18 0.02 0.07

KSe3 0.2169(8) 0.39 0.38 0.02 0.02 0.05

KSµ3 0.2125(47) 2.2 2.2 0.02 0.02 0.08

K±e3 0.2169(6) 0.30 0.27 0.06 0.11 0.05

K±µ3 0.2168(10) 0.47 0.45 0.06 0.11 0.08

Approx. contrib. to % err from:|Vus| f+(0)

Average: |Vus| f+(0) = 0.21656(35)      χ2/ndf = 1.89/5 (86%)
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• Experimental input has received only small updates since 2010
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• First calculation of radiative and isospin-breaking corrections in LQCD.**  
Compatible with ChPT,  factor of ~2 more precise
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Figure 9: Comparison of lattice results for fK±/f⇡± . This ratio is obtained in pure QCD
including the SU(2) isospin-breaking correction (see Sec. 4.3). The black squares and grey
bands indicate our averages in Eqs. (82) – (84).

fK±/f⇡± is based on the same set of ensembles bar the ones at the finest lattice spacings
(namely, only a = 0.09 � 0.15 fm, scale set with f⇡+ and relative scale set with the Wilson
flow [125, 126]) supplemented by some simulation points with heavier quark masses. HPQCD
employs a global fit based on continuum NLO SU(3) �PT for the decay constants supple-
mented by a model for higher-order terms including discretization and finite-volume e↵ects
(61 parameters for 39 data points supplemented by Bayesian priors). Their final result is
fK±/f⇡± = 1.1916(15)stat(12)a2(1)FV (10), where the errors are statistical, due to the con-
tinuum extrapolation, due to finite-volume e↵ects and the last error contains the combined
uncertainties from the chiral extrapolation, the scale-setting uncertainty, the experimental
input in terms of f⇡+ and from the uncertainty in mu/md.

Because CalLat 20, FNAL/MILC 17 and HPQCD 13A partly share their gauge ensembles,
we assume a 100% correlation among their statistical errors. A 100% correlation on the total
systematic uncertainty is also assumed between FNAL/MILC 17 and HPQCD 13A with the
HISQ valence quarks.

For Nf = 2 + 1 the results BMW 16 and QCDSF/UKQCD 16 are eligible to enter the
FLAG average. BMW 16 has analyzed the decay constants evaluated for 47 gauge ensembles
generated using tree-level clover-improved fermions with two HEX-smearings and the tree-
level Symanzik-improved gauge action. The ensembles correspond to five values of the lattice
spacing (0.05�0.12 fm, scale set by ⌦ mass), to pion masses in the range 130�680 MeV and
to values of the lattice size from 1.7 to 5.6 fm, obtaining a good control over the interpolation
to the physical mass point and the extrapolation to the continuum and infinite volume limits.

QCDSF/UKQCD 16 has used the nonperturbatively O(a)-improved clover action for the
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Figure 9: Comparison of lattice results for fK±/f⇡± . This ratio is obtained in pure QCD
including the SU(2) isospin-breaking correction (see Sec. 4.3). The black squares and grey
bands indicate our averages in Eqs. (82) – (84).

fK±/f⇡± is based on the same set of ensembles bar the ones at the finest lattice spacings
(namely, only a = 0.09 � 0.15 fm, scale set with f⇡+ and relative scale set with the Wilson
flow [125, 126]) supplemented by some simulation points with heavier quark masses. HPQCD
employs a global fit based on continuum NLO SU(3) �PT for the decay constants supple-
mented by a model for higher-order terms including discretization and finite-volume e↵ects
(61 parameters for 39 data points supplemented by Bayesian priors). Their final result is
fK±/f⇡± = 1.1916(15)stat(12)a2(1)FV (10), where the errors are statistical, due to the con-
tinuum extrapolation, due to finite-volume e↵ects and the last error contains the combined
uncertainties from the chiral extrapolation, the scale-setting uncertainty, the experimental
input in terms of f⇡+ and from the uncertainty in mu/md.

Because CalLat 20, FNAL/MILC 17 and HPQCD 13A partly share their gauge ensembles,
we assume a 100% correlation among their statistical errors. A 100% correlation on the total
systematic uncertainty is also assumed between FNAL/MILC 17 and HPQCD 13A with the
HISQ valence quarks.

For Nf = 2 + 1 the results BMW 16 and QCDSF/UKQCD 16 are eligible to enter the
FLAG average. BMW 16 has analyzed the decay constants evaluated for 47 gauge ensembles
generated using tree-level clover-improved fermions with two HEX-smearings and the tree-
level Symanzik-improved gauge action. The ensembles correspond to five values of the lattice
spacing (0.05�0.12 fm, scale set by ⌦ mass), to pion masses in the range 130�680 MeV and
to values of the lattice size from 1.7 to 5.6 fm, obtaining a good control over the interpolation
to the physical mass point and the extrapolation to the continuum and infinite volume limits.

QCDSF/UKQCD 16 has used the nonperturbatively O(a)-improved clover action for the
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Potential issue (2):

 Isospin scheme dependence 

** LQCD1:  Di Carlo et al., 
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ChPT:  
VC-Neufeld, 1102.0563

LQCD2:  Boyle et al.,  
2211.12865
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LEFT Lagrangian for CC processes

Semi-leptonic interactions

 εi ~(v/Λ)2 

           VC, Graesser, Gonzalez-Alonso  1210.4553,  JHEPVC,  Gonzalez-Alonso, Jenkins  0908.1754, NPB

Leptonic interactions

L
(µ)
CC = �

G
(0)
F

p
2

⇣
1 + ✏

(µ)
L

⌘
ē�

⇢(1� �5)⌫e · ⌫̄µ�⇢(1� �5)µ + ...

G
(µ)
F = G

(0)
F

⇣
1 + ✏

(µ)
L

⌘

✏
(µ)
L = ✏

ee
W ` + ✏

µµ
W ` + ✏4`

LCC = �
G

(0)
F Vud
p
2

⇥

 ⇣
�
ab + ✏

ab
L

⌘
ēa�µ(1� �5)⌫b · ū�

µ(1� �5)d

+ ✏
ab
R ēa�µ(1� �5)⌫b · ū�

µ(1 + �5)d

+ ✏
ab
S ēa(1� �5)⌫b · ūd

� ✏
ab
P ēa(1� �5)⌫b · ū�5d

+ ✏
ab
T ēa�µ⌫(1� �5)⌫b · ū�

µ⌫(1� �5)d

�
+ h.c.

✏
ab
↵ ! ✏̃

ab
↵

✏L = ✏
(v)
L + ✏

(c)
L

[✏(v)L ]ab = ✏
ab
W ` + ✏Wq

✏
aa
L � ✏

(µ)
L

✏
ee
L � ✏

(µ)
L = �✏

µµ
W ` + ✏Wq + [✏(c)L ]ee � ✏4`

✏
µµ
L � ✏

(µ)
L = �✏

ee
W ` + ✏Wq + [✏(c)L ]µµ � ✏4`

10

For global analysis of beta 
decays in this framework 

see: 
 

Falkowski, Gonzalez-
Alonso, Naviliat-Cuncic, 

2010.13797
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µ⌫(1� �5)d

�
+ h.c.

✏
ab
↵ ! ✏̃

ab
↵

✏L = ✏
(v)
L + ✏

(c)
L

[✏(v)L ]ab = ✏
ab
W ` + ✏Wq

✏
aa
L � ✏

(µ)
L

✏
ee
L � ✏

(µ)
L = �✏

µµ
W ` + ✏Wq + [✏(c)L ]ee � ✏4`

✏
µµ
L � ✏

(µ)
L = �✏

ee
W ` + ✏Wq + [✏(c)L ]µµ � ✏4`

10

For global analysis of beta 
decays in this framework 

see: 
 

Falkowski, Gonzalez-
Alonso, Naviliat-Cuncic, 

2010.13797

From SM →LEFT 
matching at tree level



Re/μ(π)  vs other probes of LFU
• Comparison possible within a given class of models

• Instructive example:  LFU violation in vertex corrections, probed by decays of  W, 𝜏, K, π                          

ei

νi

3.1. Effective Field Theory
We now consider NP effects parameterized by effective interactions.

3.1.1. ModifiedWℓν couplings. All observables discussed in this review are sensitive to mod-
ifiedW couplings to leptons. To investigate their effects, we therefore use the parameterization9

L ⊃ −i g2√
2
ℓ̄iγ

µPLν jW −
µ

(
δi j + ϵi j

)
+ h.c., 31.

where i, j= e,µ, or τ ; δij is the Kronecker delta; and the SM SU(2)L gauge coupling g2 is recovered
in the limit ϵij → 0. Here we have neglected possible effects of the PMNS (Pontecorvo–Maki–
Nakagawa–Sakata) matrix that drop out in the limit of vanishing neutrino masses. Furthermore,
below we disregard flavor-violating couplings (εij, with i ̸= j) because they are tightly bounded
by radiative lepton decays ℓ → ℓ′γ and lead to effects in LFUV observables that do not interfere
with the SM and are thus suppressed. Note that in Equation 31 we simply parameterize the BSM
effect by εij but do not consider the SU(2)L gauge invariance in SM EFT, which we discuss in
Section 3.1.4.

For the phenomenological analysis, note that all LFUV observables (encoded in direct ratios)
depend, at leading order, on differences ϵaa − ϵbb (a ̸= b), while the deficit in first-row CKM uni-
tarity, related to the determination of Vud, is to a good approximation sensitive only to ϵµµ (31).
In order to extract Vud from beta decays, the Fermi constant determined from the muon lifetime
(100) is needed:

1
τµ

=
(GL

F )2m5
µ

192π3 (1 + )q)(1 + εee + εµµ )2. 32.

Here GL
F is the Fermi constant appearing in the Lagrangian (excluding BSM contamination), and

)q subsumes the phase space,QED, and EW radiative corrections.Therefore, the Fermi constant
measured in muon decay and extracted under the SM assumption (GF) is related to the one at the
Lagrangian level as

GF = GL
F (1 + εee + εµµ ). 33.

Thus,

V β
ud = V L

ud
(
1 − εµµ

)
, 34.

where V L
i j denotes CKM matrix elements without any BSM contamination, which by definition

fulfills CKM unitarity, and V β
ud is the CKM element extracted from beta decays within the SM.

Taking into account that first-row and -columnCKMunitarity relations are very much dominated
byVud, being by far the biggest element of the CKMmatrix, we find that to a good approximation

εµµ ≈ 0.00098 ± 0.00027, 35.

which reflects the corresponding 3.7σ tension.
We can now reparameterize the NP effects by writing

ϵee−ϵµµ, ϵττ−ϵµµ, and ϵµµ, 36.

such that differences are direct measures of LFU and are constrained by the corresponding ratios.
As a result, we can perform a global fit in the ϵττ − ϵµµ versus ϵee − ϵµµ plane, which is uncorrelated

9In the conventions of Reference 95, we have 1 + ϵii − ϵjj = gi/gj or, equivalently, gi = gj(1 + ϵii − ϵjj), where
i, j = e, µ, or τ .
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Four-Fermion Operators

Low-energy EFT: Cirigliano et al, 0908.1754, 2112.02087

LEFT = −
g2
2

2m2
W

(

1 + C ℓℓννfi,NP

)

(ℓ̄f γµPLℓi ) (ν̄iγ
µPLνf ) + · · ·

Bryman et al

2111.05338

gℓ ≡ g2 (1 + ϵℓℓ)
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Re/μ(π) gives strongest constraint 
on  ee﹣μμ combination 

A. Pich, 2012.07099 
Bryman,  VC, Crivellin, Inguglia, 

2111.05338, ARNPS
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Figure 2
(a) Global fit in the ϵττ − ϵµµ versus ϵee − ϵµµ plane, including K, π , and τ decays, quantifying LFU in the
charged current. (b) Global fit in the Cℓℓνν

23,NP −Cℓℓνν
12,NP versus Cℓℓνν

13,NP −Cℓℓνν
12,NP plane from leptonic τ and

muon decays. Uncertainties are shown for 1σ (dark blue) and 2σ (light blue). Abbreviations: LFU, lepton
flavor universality; NP, new physics.

with ϵµµ, taking into account all LFU ratios discussed above (including correlations among them).
Figure 2a shows the result. In this depiction, while the hypothesis of LFU in the charged cur-
rent is compatible with data at the 2σ level, we observe a slight preference for negative values of
ϵee − ϵµµ.

3.1.2. Four-lepton operators. It is clear that four-lepton operators enter only purely leptonic
decays. Furthermore, because (in the limit of vanishing masses of the final-state leptons) only left-
handed vector operators with the same flavor structure as the SM lead to interference with the
SM in these decays, we can focus on them and write

L4ℓ = −g22
2m2

W
Cℓℓνν
f i ℓ̄ f γµPLℓiν̄iγ µPLν f , 37.

where Cℓℓνν
f i = 1 +Cℓℓνν

f i,NP. The effects of Cℓℓνν
f i,NP are similar to those of modified Wℓν couplings,

and we can consider the three parameters Cℓℓνν
12,NP, C

ℓℓνν
13,NP −Cℓℓνν

12,NP, and C
ℓℓνν
23,NP −Cℓℓνν

12,NP. However,
in this case C12 not only is determined from the CAA but also has an impact on the global EW fit
because it modifies the determination of the Fermi constant from muon decay (101, 102). In fact,
they turn out to prefer opposite signs:

Cℓℓνν
12,NP

∣∣
CAA ≈ 0.00098 ± 0.00027, and

Cℓℓνν
12,NP

∣∣
EW ≈ −0.00067 ± 0.00033.

38.

BothCℓℓνν
13,NP −Cℓℓνν

12,NP andC
ℓℓνν
23,NP −Cℓℓνν

12,NP are determined from the ratios of rates τ → µνν/τ → eνν,
τ → µνν/µ → eνν, and τ → eνν/µ → eνν, while all ratios involving mesons remain unaffected.
Therefore, we find the global fit shown in Figure 2b.

3.1.3. Two-quark–two-lepton operators. Concerning two-quark–two-lepton operators, both
left-handed vector operators and scalar ones are relevant because they interfere with the SM

80 Bryman et al.
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• Global fit [except for B decays]: 
Bryman,  VC, Crivellin, Inguglia, 

2111.05338, ARNPS

PIONEER will have strong impact on  
the horizontal scale in this plot SM
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Backup: LNV
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Dirac vs Majorana with ν beams?

75

• Simple test (B. Kayser):  generate ν beam from π+→μ+νμ and check whether it produces μ+ on a target downstream

π+μ+ νμ ? μ+νμ

A Dirac neutrino won’t do that. 
A Majorana neutrino with helicity=+1 (ν(R)=ν+) will produce μ+.                     

But fraction of ν(R)=ν+ produced in π+→μ+νμ is ~(mν/Eν)2 < 10-16!!



Dirac vs Majorana with ν beams?

75

• Simple test (B. Kayser):  generate ν beam from π+→μ+νμ and check whether it produces μ+ on a target downstream

π+μ+ νμ ? μ+νμ

Smallness of ν mass and  V-A nature of the weak interactions imply that

Neutrinoless probes of ΔL=2 dynamics are our best bet!



Dirac vs Majorana with ν beams?

75

• Simple test (B. Kayser):  generate ν beam from π+→μ+νμ and check whether it produces μ+ on a target downstream

π+μ+ νμ ? μ+νμ

Among ΔL=2 neutrinoless processes (nn→ppe−e−, K+→π-e+e+, pp →e+e+ +2 jets ,…),                           
0νββ decay is the strongest* probe — “Avogadro’s number wins”(P.  Vogel)



Estimating the contact term 

76

• Determine C1,2  with ~ 30% uncertainty (dominated by intermediate k)

VC, Dekens, deVries, Hoferichter, Mereghetti,  2012.11602,   2102.03371

Dominant uncertainty from inelastic 
channels (NNπ , …):

k

k

π



Estimating the contact term 

76

• Determine C1,2  with ~ 30% uncertainty (dominated by intermediate k)

VC, Dekens, deVries, Hoferichter, Mereghetti,  2012.11602,   2102.03371

• Provided ‘synthetic data’ for the nn→pp amplitude at threshold

• First calculation of 48Ca →48Ti with contact fitted to synthetic data ⇒ contact term 

enhances nuclear matrix element by (43±7)%  

Wirth, Yao, Hergert,  2105.05415 



EFT-based master formula
• Framework to interpret 0νββ searches in terms of any high-scale model 

and possibly unravel the underlying mechanism in case of discovery

V. Cirigliano,  W. Dekens,  J. de Vries, M. Graesser, E. Mereghetti,   JHEP 1812 (2018) 097 [1806.02780]
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