The What, Why, and How of flavour physics "the chronicles of experimental B physics" Prof. Radoslav Marchevski, EPFL

PSI Particle Physics Summer School, Zuoz, Switzerland, August 4-10th 2024

Outline

- What is our current state of understanding of particle physics?
 - the Standard Model of particle physics, flavour physics
- Why is it interesting to study flavour physics (main focus on *B*-meson observables)?
 - CKM matrix and unitarity triangles
 - neutral meson mixing and oscillation
 - CP violation
- **How** do we study flavour observables experimentally?
 - techniques for heavy meson production
 - hadron vs e^+e^- machines: which one is better?
 - symmetric vs asymmetric e^+e^- machines
 - flavour tagging
 - measurements of flavour observables (CKM matrix elements, CP violation)

What?

Introduction

• Main goal of particle physics (also known as high energy physics):

Understand what are the fundamental laws of Nature

- Particle physics experiments probed energy scales as high as 10 TeV ($m_p \sim 1 \text{ GeV}$) \leftrightarrow distances $10^{-20}m$
- Our understanding of how Nature works at short distances has significantly improved over the past century
 - quantum mechanics → understanding of atomic spectra and the periodic system of elements
 - insight into the structure of the atomic nucleus → paved the way to our understanding of strong interaction
 - flavour-changing transition → started with the discovery of radioactivity (β decay) and had huge importance in the development of the SM
- All of these findings culminated in the development of the Standard Model (SM) of particle physics: amazing achievement of humanity!

The Standard Model for pedestrians

From quarks to hadrons (QCD at low energies)

• *High energy (short distances):* QCD is perturbative ($\alpha_S \ll 1$)

[asymptotic freedom]

• *Low energy (long distances):* QCD is strongly coupled → no perturbative expansion

- **<u>Confinement hypothesis</u>**: quarks (*SU*(3)_{*C*} triplets) must be confined within color-singlet bound states
- No formal proof of that hypothesis but many indications that it is true
- Experimentally we do not observe free quarks and gluons but rather bound states we call hadrons
 - bosonic hadrons are called mesons $(q\bar{q})$

today we will focus on mesons

- fermionic hadrons are called baryons (qqq)
- Hadrons are formed due to the confining nature of QCD \rightarrow can't be treated perturbatively
- Some properties of hadrons can be determined independent of our ability to describe their internal structure

Mesons

	Meson	Quark content $[q\overline{q}']$	$I(J^P)$	Mass [GeV/ <i>c</i> ²]	Mean 1	ifetime	cτ
	$B^{+}(B^{-})$	$ar{b}u(ar{u}b)$	1/2(0 ⁻)	5.3	1.6	ps	491 μm
(open) <i>B</i> mesons: main focus today	$B^0(\bar{B}^0)$	$\bar{b}d~(b\bar{d})$	1/2(0 ⁻)	5.3	1.5 ps		455 μm
	$B_s^0(\bar{B}_s^0)$	$\overline{b}s (b\overline{s})$	0(0 ⁻)	5.4	1.5 ps		455 μm
(open) charm	$B_c^+(B_c^-)$	$\bar{b}c~(b\bar{c})$	0(0 ⁻)	6.3	0.5	ps	150 μm
(D) mesons	$D^0(\overline{D}{}^0)$	cū (c̄u)	$1/2(0^{-})$	1.9	0.4 ps		129 μm
	$D^+(D^-)$	$car{d}$ $(ar{c}d)$	1/2(0 ⁻)	1.9	1.0	ps	312 μm
	$D_s^+(D_s^-)$	$c\bar{s}(\bar{c}s)$	0(0 ⁻)	2.0	0.5	ps	151 μm
	$K^+(K^-)$	sīu (sū)	1/2(0 ⁻)	0.494	12	ns	3.7 m
kaons (K mesons)	$K^0(\overline{K}^0)$	$\bar{s}d\left(s\bar{d} ight)$	1/2(0 ⁻)	0.498	K _S	90 ps	2.7 cm
					K _L	51 ns	15.3 m

Flavour physics

- In the SM fermions interact through pure gauge interactions (related to unbroken gauge symmetries), weak and Yukawa interactions (source of flavour and CP violation)
- *Flavour physics:* interactions that distinguish between particle flavours (*W* mediated weak interactions and Yukawa interactions)
- *Flavour parameters:* parameters that carry flavour indices (10 in the SM, 6 quark masses + 4 CKM parameters)

- Flavour physics can predict New Physics (NP) before it's directly observed
 - smallness of $\Gamma(K_L \to \mu^+ \mu^-) / \Gamma(K^+ \to \mu^+ \nu_\mu)$ allowed the prediction of the existence of the charm quark
 - size of Δm_K (kaon mixing) allowed for the charm mass prediction
 - measurement of ϵ_K (CP violation in the kaon sector) allowed for the prediction of the existence of third generation particles
 - size of $\Delta m_B(B$ -meson mixing) allowed for a quite accurate top mass prediction
 - measurement of neutrino flavour transitions led to the discovery that neutrinos have a mass $\neq 0$

CKM matrix and the unitarity triangles

- The parameters of the CKM matrix in nature are **far from generic**
 - strong hierarchy is observed in the off-diagonal elements expansion ion the small parameter $\lambda = 0.225$
- Geometrical interpretation of the off-diagonal elements: 6 independent "unitarity" triangles

$$\sum_{i=u,c,t} V_{iq} V_{iq'}^* = 0, \qquad (qq' = ds, db, sb) \qquad \qquad \sum_{i=d,s,b} V_{qi} V_{q'i}^* = 0, \qquad (qq' = uc, ut, ct)$$

• *Note:* the area of all CKM unitarity triangles is the same $A = |J_{CKM}|/2$, (Jarlskog invariant)

$$J_{\rm CKM} = c_{12}c_{23}c_{13}^2 s_{12}s_{23}s_{13}\sin\delta \approx \lambda^6 A^2 \eta = (3.115^{+0.047}_{-0.059}) \times 10^{-5}$$

 $\delta(\eta)$ is [the only] source of *CP*-violation in the SM

"The" unitarity triangle

• "The" unitarity triangle: all sides are of similar length and its parameters can be studied using B^0 , B^+ decays

$$\sum_{i=u} V_{iq} V_{iq'}^* = 0, \qquad (qq' = db) \qquad \Rightarrow \qquad V_{ub}^* V_{ud} + V_{tb}^* V_{td} + V_{cb} V_{cd}^* = 0$$
$$\mathcal{O}(\lambda^3) \qquad \mathcal{O}(\lambda^3) \qquad \mathcal{O}(\lambda^3)$$

$$\alpha = \arg\left(-\frac{V_{td}V_{tb}^{*}}{V_{ud}V_{ub}^{*}}\right)$$

$$\beta = \arg\left(-\frac{V_{cd}V_{cb}^{*}}{V_{td}V_{tb}^{*}}\right)$$
 observables

$$\gamma = \arg\left(-\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}\right)$$

Goal of unitarity triangle tests

- Over-constrain the triangle by making measurements of all parameters
- Comparing those in tree-level processes (pure SM) and those in loops (sensitive to New Physics)
- Inconsistencies can help us pin-point the flavour structure of New Physics \underline{S}_{1}

CKM matrix

12

Phenomenology of neutral meson mixing and oscillation

- Pseudoscalar mesons P^0 , \overline{P}^0 ($P = K, D, B, B_s$) with well-defined flavour quantum numbers
- Within QCD and QED they are stable and do not mix with their antiparticle
- The weak interaction does not respect these flavour symmetries and thus P^0 and \overline{P}^0 decay
- These states are neutral under the unbroken symmetries of the SM ⇒ weak interaction leads to mixing
- Mixing is generated by $P \leftrightarrow \overline{P}^0$ transition amplitudes
- The mixing lifts the degeneracy between the masses m_P and $m_{\bar{P}}$ resulting in two physical (mass) eigenstates that are superpositions of P^0 and \bar{P}^0
 - Different masses $\Delta m = m_P m_{\overline{P}} \neq 0$
 - Different widths $\Delta \Gamma \neq 0$

Flavour mixing

• Mixing occurs in all neutral meson systems and is physically caused by

• Physical states (mass eigenstates) are a superposition of flavour eigenstates

physical eigenstatescomplexmass differencewidth difference $|P_{L,H}\rangle = p|P^0\rangle \pm q|\bar{P}^0\rangle$, $|p|^2 + |q|^2 = 1$ $\Delta m \equiv m_H - m_L$ $\Delta \Gamma \equiv \Gamma_H - \Gamma_L$

- If CP is conserved mass eigenstates = CP eigenstates (i.e. |p/q| = 1)
- Known to be the case for the kaon system, where $\epsilon_K = \frac{p-q}{p+q} \approx 2 \times 10^{-3}$
 - SM calculations indicate small, but finite, breaking in the other systems too

Flavour oscillation

• Mixing occurs in all neutral meson systems and is physically caused by

• Physical states (mass eigenstates) are a superposition of flavour eigenstates

physical eigenstatescomplexmass differencewidth difference $|P_{L,H}\rangle = p|P^0\rangle \pm q|\bar{P}^0\rangle$, $|p|^2 + |q|^2 = 1$ $\Delta m \equiv m_H - m_L$ $\Delta \Gamma \equiv \Gamma_H - \Gamma_L$

- Mixing leads to an oscillation probability to observe a meson in either flavour eigenstate
- *Example:* if at t = 0 we have B^0 then at a later time t we have

Probability to decay as $\frac{B^0}{B^0} \propto e^{-\Gamma_d t} [1 \pm \cos(\Delta m_d t)]$ We can measure both time-integrated and time dependent CP violation effects

Flavour oscillation parameters

$$x \equiv \frac{\Delta m}{\Gamma}$$
, $y \equiv \frac{\Delta \Gamma}{2\Gamma}$, $\Delta m \equiv m_H - m_L$, $\Delta \Gamma \equiv \Gamma_H - \Gamma_L$

 $\mathcal{P}(t) \propto [\cosh(y\Gamma t) \pm \cos(x\Gamma t)]$

	$\Delta m [s^{-1}]$	$\Gamma[s^{-1}]$	$\Delta\Gamma[s^{-1}]$	x	у
$K^0 - \overline{K}^0$	0.53×10^{10}	0.6×10^{10}	-1.1×10^{10}	~0.9	~ - 1
$D^0 - \overline{D}^0$	$\sim 0.01 \times 10^{12}$	$\sim 2.4 \times 10^{12}$	3.4×10^{10}	~0.004	~0.007
$B_d^0 - \overline{B}_d^0$	0.51×10^{12}	$\sim 0.67 \times 10^{12}$	~0	~0.77	~0
$B_s^0 - \overline{B}_s^0$	17.7×10^{12}	$\sim 0.66 \times 10^{12}$	9.0×10^{10}	~27	~0.06

- Wide range in the sizes of the mixing parameters across the four neutral meson systems
 - significant practical consequences for measurements
- Size of mixing effects are highly sensitive to SM parameters (CKM elements, GIM mechanism, quark masses ...)
- Due to its suppressed nature mixing can be used to set severe bounds (~10³ TeV) on most general New Physics scenarios

Flavour oscillation

- Wide range of experimental sensitivities required to observe meson oscillations
- Meson time evolution depends also on CP – violation in mixing $(q/p \neq 1)$

CP violation

- *CP* asymmetries arise when two processes related by *CP* conjugation differ in their rates
- *CP* violation is related to a phase in the Lagrangian \Rightarrow all *CP* asymmetries must arise from interference effects

$$x \equiv \frac{\Delta m}{\Gamma}, \qquad y \equiv \frac{\Delta \Gamma}{2\Gamma}, \qquad \lambda_f \equiv \frac{q}{p} \frac{\bar{A}_f}{A_f}$$

 $A_f: \mathbb{P}^0 \to f$ amplitude

 $\bar{A}_{\bar{f}}: \bar{P}^0 \to \bar{f}$ amplitude of the *CP*-conjugated process

• Full time evolution formula

$$2\widehat{\Gamma}[P^{0}(t) \to f] = \left(1 + \left|\lambda_{f}\right|^{2}\right)\cosh(y\Gamma t) + \left(1 - \left|\lambda_{f}\right|^{2}\right)\cos(x\Gamma t) + 2\mathcal{R}e(\lambda_{f})\sinh(y\Gamma t) - 2\mathcal{I}m(\lambda_{f})\sin(x\Gamma t)$$

 $2\widehat{\Gamma}[\overline{P}^{0}(t) \to f] = \left(1 + \left|\lambda_{f}\right|^{-2}\right)\cosh(y\Gamma t) + \left(1 - \left|\lambda_{f}\right|^{-2}\right)\cos(x\Gamma t) + 2\mathcal{R}e\left(\lambda_{f}^{-1}\right)\sinh(y\Gamma t) - 2\mathcal{I}m\left(\lambda_{f}^{-1}\right)\sin(x\Gamma t)$

CP violation: amplitudes

- It's useful to factorise an amplitude in three parts
 - magnitude a_i
 - weak phase ϕ_i
 - strong phase δ_i
- If there are two such contributions to an amplitude we can write

$$A_f = a_1 e^{i(\delta_1 + \phi_1)} + a_2 e^{i(\delta_2 + \phi_2)} \qquad \qquad \bar{A}_{\bar{f}} = a_1 e^{i(\delta_1 - \phi_1)} + a_2 e^{i(\delta_2 - \phi_2)}$$

• We always choose $a_1 > a_2$

$$r_f = \frac{a_2}{a_1}$$
, $\phi_f = \phi_2 - \phi_1$, $\delta_f = \delta_2 - \delta_1$

Types of CP violation

- Each phase is convention-dependent but ϕ_f , δ_f are physical
- Phenomenology of *CP* violation is very rich in neutral meson decays: mixing can contribute to the interference
- Three types of *CP* violation mechanisms depending on which amplitudes interfere
 - *In decay:* interference between two decay amplitudes
 - *In mixing:* interference between absorbtive (on-shell intermediate states) and dispersive (off-shell intermediate state) mixing amplitudes
 - *In interference between decays with and without mixing:* interference between direct decay and first-mix-then-decay amplitude

CP violation in decay

$$\frac{\left|A_{f}\right|}{\left|\bar{A}_{\bar{f}}\right|} \neq 1$$

• In charged particle decays this is the only possible contribution to the *CP* asymmetry:

$$\mathcal{A}_{f} \equiv \frac{\Gamma(B^{-} \to f^{-}) - \Gamma(B^{+} \to f^{+})}{\Gamma(B^{-} \to f^{-}) + \Gamma(B^{+} \to f^{+})} = \frac{\left|\bar{A}_{f^{-}}/A_{f^{+}}\right|^{2} - 1}{\left|\bar{A}_{f^{-}}/A_{f^{+}}\right|^{2} + 1}$$

• Using the equation from slide 19 we obtain for $r_f \ll 1$

$$\mathcal{A}_f = 2r_f \sin \phi_f \sin \delta_f$$

• We need two decay amplitudes $(r_f \neq 0)$ with different weak phases $(\phi_f \neq 0, \pi)$ and strong phases $(\delta_f \neq 0, \pi)$

CP violation in decay: comments

 $\mathcal{A}_f = 2r_f \sin \phi_f \sin \delta_f$

- To have large *CP* asymmetry we need each of the three factors not to be small
- Similar expression holds for the contribution of *CP* violation in decay in neutral mesons decays but with additional contributions from mixing
- Another complication in neutral meson decays is that it is not always possible to tell the flavour of the decaying meson (e.g. if it's a B^0 or \overline{B}^0) which can be a problem or an advantage
- In general, strong phase is not calculable since it is related to QCD
 - not a problem if the aim is to demonstrate *CP* violation
 - problem if we want to extract the weak phase ϕ_f
 - in some cases, the strong phase can be measured experimentally, eliminating the source of theoretical uncertainty

CP violation in mixing

$$\left|\frac{q}{p}\right| \neq 1$$

- In decays of neutral mesons into favour-specific final states ($\bar{A}_f = 0$, and consequently $\lambda_f = 0$)
- In semileptonic neutral meson decays, this is the only source of *CP* violation

$$\mathcal{A}_{\rm SL}(t) \equiv \frac{\widehat{\Gamma}\left(\overline{B}{}^0(t) \to l^+ X\right) - \widehat{\Gamma}\left(B^0(t) \to l^- X\right)}{\widehat{\Gamma}\left(\overline{B}{}^0(t) \to l^+ X\right) + \widehat{\Gamma}\left(B^0(t) \to l^- X\right)} = \frac{1 - |q/p|^4}{1 + |q/p|^4}$$

- The $\mathcal{A}_{SL}(t)$ quantity which is an asymmetry of time-dependent decay rates, is actually time-independent
- The extraction of the value of the *CP* violating phase from a measurement of *A*_{SL} involves, in general, large hadronic uncertainties
- Differences between the manifestation of CP violation in the different systems (different dependence on q/p)

CP violation in interference of decays with and without mixing

 $\Im m(\lambda_f) \neq 0$

- *CP* asymmetry in decays into final *CP* eigenstates
- Situation relevant in many cases is when one can neglect the effects of *CP* violation in decay and in mixing

$$\left|\bar{A}_{f_{CP}}/A_{f_{CP}}\right| \approx 1$$
 $\left|q/p\right| \approx 1$ $\left|\lambda_{f_{CP}}\right| = 1$

• If we consider in addition, the case where we can neglect $y (y \ll 1)$ then

$$\mathcal{A}_{f_{CP}}(t) \equiv \frac{\Gamma(\overline{B}^{0}(t) \to f_{CP}) - \Gamma(B^{0}(t) \to f_{CP})}{\Gamma(\overline{B}^{0}(t) \to f_{CP}) + \Gamma(B^{0}(t) \to f_{CP})} = \mathcal{I}m(\lambda_{f_{CP}})\sin(\Delta m_{B}t)$$

• Measurement of a *CP* asymmetry in a process where these approximations are valid provides a direct probe of the weak phase between the mixing amplitude and the decay amplitude (kaon physics)

How?

Flavour physics at different machines

- Flavour physics requires precise measurements of delicate and rare processes: choice of environment matters!
- The event complexity has important experimental consequences
 - (Initial) background much higher at a hadron machine, particularly for studies with neutral particles
 - hadron machines pose a much more severe trigger challenge
 - Coherent production (B-factories) is valuable for flavour tagging

Heavy meson production

• electron – positron: $P\overline{P}$ pair \rightarrow strong (QCD) or EW-NC (γ/Z) processes [flavour conserving]

• proton – (anti)proton:

 $P\overline{P}$ pair \rightarrow strong (QCD) processes [flavour conserving] $P\overline{P}$ pair or single $P \rightarrow$ EW processes (via $Z, W, t \rightarrow Wb$)

- heavier hadron decays $P\overline{P}$ pair or single $P \to EW$ processes $(B \to D, K; D \to K; J/\psi \to D, K; ...)$
- Mesons often products of "free" quark hadronization (jets)

В	D	K
$e^+e^- \rightarrow \mathcal{Y}(4S) \rightarrow B\bar{B}$	$e^+e^- \rightarrow \psi(3770) \rightarrow D\overline{D}$	$e^+e^- \rightarrow \phi(1020) \rightarrow K\bar{K}$
$e^+e^- \rightarrow b\overline{b}$ (continuum)	$e^+e^- \rightarrow q\bar{q}(c,b)$ (continuum)	$e^+e^- \rightarrow q\bar{q}(c,b,s)$ (continuum)
$e^+e^- \rightarrow Z \rightarrow b\overline{b}$	$e^+e^- \rightarrow Z \rightarrow q\bar{q}(q=c,b)$	$e^+e^- \rightarrow Z \rightarrow q\bar{q}(q=c,b,s)$
$pp(\bar{p}) \rightarrow b\bar{b}X$	$pp(\bar{p}) \rightarrow q\bar{q}X(q=c,b)$	$pp(\bar{p}) \rightarrow q\bar{q}X(q=c,b,s)$
	Decay of <i>B</i> or $b\overline{b}$ resonances	Decay of B, D or $b\overline{b}, c\overline{c}$ resonances

Heavy flavour production in pp collisions

Sub-leading order heavy quark production diagram in hadronic collisions

Main heavy quark production diagrams in hadronic collisions

Heavy flavour production in pp collisions

 $\sigma(pp \rightarrow b\bar{b}X) \sim 30 - 600 \,\mu b @\sqrt{s} \sim 1 - 13 \,\text{TeV}$

Heavy flavour production in (anti)proton – proton collisions depends on transverse momentum and (pseudo)rapidity, according to the type of production

Meson production in e^+e^- collisions

Flavour physics facilities

 e^+e^- colliders for production at threshold

KEKB & super KEKB (Japan) PEPII (SLAC – USA) CESR (Cornell – USA)

. . .

LHC (CERN) Tevatron (Fermilab – USA) LEP (CERN)

Flavour physics experimental principles

e^+e^- colliders for production at threshold

- Symmetric or asymmetric beams
- 4π detector configuration
- O(0.5 2 GeV) energy range of the decay products

High energy colliders

- Symmetric beams
- 4π or forward detector configuration
- O(10 100 GeV) energy range of the decay products

Common features

- Vertexing: reconstruct the position of the decay vertex of the flavoured mesons (when/if possible)
- Tracking: reconstruct the charged decay products of the mesons
- Particle identification (PID): identify the different types of charged decay products (e, μ, π, K, p)
- Electromagnetic calorimetry: reconstruct the neutral decay products of the mesons (photons)
- Hadronic calorimetry / "muon" detection: reconstruct the long-living penetrating particles (π , K, p, μ)

B – factories

$\underline{y}(4S)$ cleanest source of $B\overline{B}$ pairs

- Only $B^0 \overline{B}^0$ (50%) or $B^+ \overline{B}^-$ (50%)
- *B* produced almost at rest and small particle multiplicity per $\mathcal{Y}(4S)$ decay
- Secondaries spread over the full solid angle: large reconstruction efficiency with barrel-like configuration
- On-resonance background from continuum: measurable from off-resonance side-bands
- Kinematic constraints: *B* mass resolution improves ×10 using $E_{beam}^* = \sqrt{s}/2$ instead of E_B^*

<u>Coherent BB</u> production (entangled state)

• Physics is sensitive to the time difference between the *B*'s when they decay

<u>High luminosity:</u> $\int \mathcal{L} \sim \mathcal{O}(ab^{-1})$ with peak at $\mathcal{L} = 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ [BaBar + Belle]

- Beam-induced background (synchrotron radiation, beam-beam interactions) increases detector occupancy and challenges detector technology (scales with L)
- Cross section: $\sigma_{b\bar{b}} \sim 1.1 \text{ nb} \Rightarrow \sim 1.1 \times 10^9 b\bar{b} \text{ pairs /ab}^{-1}$

Asymmetric B – factories

- *B* meson production at threshold: $e^+e^- \rightarrow \mathcal{Y}(4S) \rightarrow B\overline{B}$, $m_{ee} = 10.58 \text{ GeV}$
- **Problem** with symmetric beams: $\mathcal{Y}(4S)$ at rest **not measurable**
 - *B* in $\mathcal{Y}(4S)$ rest frame has $p_B^* \approx 330 \text{ MeV}/c \rightarrow \Delta z^* < \beta^* \gamma^* c \tau_B \approx 30 \mu \text{m} \left(\beta^* \gamma^* = p_B^* c / (m_B c^2)\right)$
- **Solution:** asymmetric e^+e^- to boost $\mathcal{Y}(4S)$ in the lab frame (β, γ)

 $z = \gamma(z^* + \beta ct^*) = \gamma(z^* + \beta \gamma^* c\tau_B)$

 $z^* = \beta^* c \cos \theta^* \gamma^* \tau_B [\theta^*, B \text{ emission angle in } \mathcal{Y}(4S) \text{ rest frame}]$

 $z = \gamma(\beta^*\gamma^*\cos\theta^* + \beta\gamma^*)c\tau_B = \gamma(\alpha\cos\theta^* + \beta\sqrt{1+\alpha^2})c\tau_B, \qquad [\alpha \equiv \beta^*\gamma^* \ll 1, \gamma^* = \sqrt{1+\alpha^2}]$ $z_1 - z_2 = \gamma\beta\sqrt{1+\alpha^2}c(t_1 - t_2) + \gamma\alpha\cos\theta^*c(t_1 + t_2), \quad [1, 2 \text{ denote the } B\bar{B} \text{ produced}]$

Example: $E_{e^-} = 9.1 \text{ GeV}, E_{e^+} = 3.0 \text{ GeV} \rightarrow \gamma \beta = 0.56 \Longrightarrow \Delta z \approx \gamma \beta \Delta t \approx 300 \,\mu$

Experiments at **B** factories: BaBar, Belle, Belle II

- BaBar (PEPII), Belle (KEKB), Belle II (superKEKB)
- *Presently running:* Belle II (goal $\int \mathcal{L} \sim \mathcal{O}(50 \text{ ab}^{-1})$ with peak at $\mathcal{L} > 10^{35} \text{ cm}^{-2} \text{s}^{-1}$

Flavour physics at pp collider (LHC)

Large $b\overline{b}$ and $c\overline{c}$ cross sections

- All possible types of *b*, *c* hadrons produced
- *B*, *D* produced with large boost in lab frame
- High energy decay products, but clean particle identification and muon reconstruction
- Relatively low detection efficiency, depending on the detector configuration
- No kinematic constraints
- $\sigma_{b\bar{b}}/\sigma_{\text{inelastic}} \sim 10^{-3}$: high particle multiplicity from QCD, requires selective triggers

<u>Not extreme luminosity:</u> $\int \mathcal{L} \sim \mathcal{O}(fb^{-1})$ with peak at $\mathcal{L} = 4 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ [LHCb]

- High cross section: $\sigma_{b\bar{b}} \sim 150 \,\mu b @ 13 \text{ TeV}$ (LHCb detector coverage) $\Rightarrow \sim 1.5 \times 10^{11} \, b\bar{b}$ pairs /fb⁻¹
 - compare with $\sim 1.1 \times 10^9 b\bar{b}$ pairs /ab⁻¹ for *B* factories
- Prospects for ×5 increase soon
- Radiation resistant detector technology

LHCb experiment

CKM measurements: semileptonic **B** meson decays

<u>Inclusive vs exclusive:</u> two different theoretical and experimental approaches

Semileptonic (tree-level) **B** decays

Different theoretical and experimental approaches depending on the flavour

Form factors

- Encode the non-perturbative part of the hadronic matrix element (can be calculated by lattice QCD)
- We can use approximate symmetries of QCD to learn more about them and relate them to each other
- The physics intuition is that form factors arise from the overlap of the wave function of the two hadrons
 - from QM: probability of a fast transition between two states $i \rightarrow f$ depends on the overlap between their wavefunctions
- The sudden transition in semileptonic hadron decays is due to the weak interaction

Exclusive determination of $|V_{cb}|$: $B_s \rightarrow D_s^{(*)-} \mu^+ \nu_{\mu}$

- Exclusive determination of $|V_{cb}|$ using B_s decays
 - not the most precise exclusive $|V_{cb}|$ measurement but a very nice demonstration of the techniques used at LHCb
 - $|V_{cb}|$ extraction depends on the Form Factor parametrisation (interplay with theory)

Inclusive determination of $|V_{\mu b}|$

- $B \rightarrow X_u l^+ \nu$: inclusive approach at Belle ٠
- *Event selection:* ٠

400

350

250

() 300 300

50

0 1.5 0.1 0.5

1.0

B→Dlv

 $B \rightarrow D^* l v$

Gap modes

Sec. & fake

Continuum

 $B \rightarrow X_{\mu} \ell \nu$

Data

1.2

1.4

1.6

// MC unc.

low statistics, large background from $B \rightarrow X_c l^+ \nu$ requires a ٠ selection of **small portions** of the phase space

 $|V_{ub}| = (4.10 \pm 0.09 \pm 0.22 \pm 0.15) \times 10^{-3}$ Phys. Rev. D 104, 012008 (2021)

• Weak phase between $b \rightarrow c$ (Cabibbo – favoured "fav") and $b \rightarrow u$ (Cabibbo – suppressed "sup") quark transitions

$$\boldsymbol{\gamma} = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

- Measurement
 - processes receiving contributions from both Cabibbo-favoured and suppressed amplitudes
 - study the interference between the two amplitudes
- Gronau-London-Wyler method (GLW)
 - Build observables of "fav"-"sup" amplitudes interference from the decays $B^+ \rightarrow \overline{D}{}^0 K^+ \quad B^+ \rightarrow D^0 K^+ \quad B^- \rightarrow \overline{D}{}^0 K^- \quad B^- \rightarrow D^0 K^- \quad B^{\pm} \rightarrow D_{CP} K^{\pm}$
 - $D^0, \overline{D}^0 =$ flavour-specific D final state (e.g. (~) $D^0 \to K^- \pi^+, \overline{D}^0 \to K^+ \pi^-)$
 - $D_{CP} = CP$ -eigenstate D final state (e.g. $\pi^+\pi^-, K^+K^-, K_S\pi^0, ...$)

N.B. no need to study time-dependent asymmetries (charged B mesons)

• Only 1 tree-level amplitude in "fav" and "sup"

 $|A_{+\overline{D}}| = |A_{-D}| \equiv |A_{fav}|$ $|A_{+D}| = |A_{-\overline{D}}| \equiv |A_{sup}|$

• *CP* - conservation in strong/em interactions

 $\delta_{+\overline{D}} = \delta_{-D} \equiv \delta_f$ $\delta_{+D} = \delta_{-\overline{D}} \equiv \delta_s$

• Notation

 $r_B \equiv |A_{sup}| / |A_{fav}|$ $\delta_B \equiv \delta_s - \delta_f$

$B^{\pm} \rightarrow D_{CP} K^{\pm}$

- hyp. 1: no D^0 oscillation
- hyp. 2: no CP violation in D decay

$$A(B^+ \to D_{CP\pm}K^+) = \frac{1}{\sqrt{2}} [A(B^+ \to D^0K^+) \pm A(B^+ \to \overline{D}^0K^+)]$$
$$A(B^- \to D_{CP\pm}K^-) = \frac{1}{\sqrt{2}} [A(B^- \to D^0K^-) \pm A(B^- \to \overline{D}^0K^-)]$$

Observables

$$R_{CP\pm} \equiv 2 \frac{\Gamma(B^- \to D_{CP\pm}K^-) + \Gamma(B^+ \to D_{CP\pm}K^+)}{\Gamma(B^- \to D^0K^-) + \Gamma(B^+ \to \overline{D}^0K^+)} = 1 + r_B^2 \pm 2r_B \cos \delta_B \cos \gamma$$
$$\Gamma(B^- \to D_{CP+}K^-) - \Gamma(B^+ \to D_{CP+}K^+) \qquad \pm 2r_B \sin \delta_B \sin \gamma$$

$$\mathcal{A}_{CP\pm} \equiv \frac{\Gamma(B^- \to D_{CP\pm}K^-) + \Gamma(B^+ \to D_{CP\pm}K^+)}{\Gamma(B^- \to D_{CP\pm}K^-) + \Gamma(B^+ \to D_{CP\pm}K^+)} = \frac{\Gamma(B^- \to B^-)}{1 + r_B^2 \pm 2r_B \cos \delta_B \cos \gamma}$$

$$r_B = \frac{\Gamma(B^- \to \overline{D}{}^0 K^-)}{\Gamma(B^- \to D^0 K^-)} = \frac{\Gamma(B^+ \to D^0 K^+)}{\Gamma(B^+ \to \overline{D}{}^0 K^+)}$$

- **Gronau-London-Wyler method** (GLW)
 - Experimental difficulty due to small r_B leading to large uncertainty
 - Angular solution up to a four fold ambiguity
 - *D*⁰ oscillation cannot be fully neglected
- GLW example (BaBar)
 - Measure R_{CP+} , R_{CP-} , A_{CP+} , A_{CP-}
 - Extract the parameters γ , δ_B , r_B
 - Decays: $B^{\pm} \rightarrow Dh^{\pm}$ with $h = K, \pi$

D _{CP+}	$[K^+K^-]_D h^{\pm} [\pi^+\pi^-]_D h^{\pm}$
D _{CP} -	$[K_S \pi^0]_D h^{\pm} [K_S \phi]_D h^{\pm} [K_S \omega]_D h^{\pm}$
Non - CP	$[K^{-}\pi^{+}]_{D^{0}}h^{-} [K^{+}\pi^{-}]_{\overline{D}^{0}}h^{+}$

$$(K_S \rightarrow \pi^+ \pi^-, \phi \rightarrow K^+ K^-, \omega \rightarrow \pi^+ \pi^- \pi^0)$$

Legend:

 $--B \rightarrow D\pi$

PRD 82 (2010) 072004

PRD 82 (2010) 072004

Measurement of the CKM angle γ : combination

- Other methods are analysis of multibody decays of *D* mesons (Dalitz analysis)
- Combinations of the results make use of all the possible ratios from various types of methods

$$\gamma = \left(65.9^{+3.3}_{-3.5}\right)^{\circ}$$

Unitarity triangle: ~ 30 years of progress

Unitarity triangle: ~ 30 years of progress

Flavour tagging

- Flavour eigenstates P^0 and \overline{P}^0 have a well-defined flavour content
- *Example:* B^0 has the quantum numbers of a $\overline{b}d$ state
- In some cases, the final state of the decay informs us whether a neutral *P* meson is in a P^0 or a \overline{P}^0 state

$$\overline{B}{}^0 \to X_c \mu^- \overline{\nu}_{\mu}, \qquad \qquad B^0 \to X_{\bar{c}} \mu^+ \nu_{\mu}$$

hadronic system with a charmhadronic system with a charmquantum number +1quantum number -1

- The charge of the charged lepton tells us the flavour of the decaying meson
- Before the meson decays it can be in a superposition of B^0 and \overline{B}^0 : the decay is a quantum measurement
- Tagging simplifies the oscillation formalism (taking the case of $\bar{A}_f = 0 \rightarrow \lambda_f = 0$ and assuming |q/p| = 1, y = 0)

$$\widehat{\Gamma}(P^0(t) \to f) = \frac{1 + \cos(\Delta m t)}{2}, \qquad \widehat{\Gamma}(\overline{P}^0(t) \to f) = \frac{1 - \cos(\Delta m t)}{2}$$

Flavour tagging at decay

• Look for flavour-specific decays

"cascade" events $(B \rightarrow D \rightarrow K l \nu)$ mimic opposite tag

Kaon/ π tagging

W W^+ $K^{-}(\pi^{-})$ b (Q = -1/3) c (Q = +2/3) s/d (Q = -1/3) K^-/π^- tag *b* quark (\overline{B}^0), K^+/π^+ tag \overline{b} (B^0)

(virtual) *W* can produce final states with K/π of any sign Final cascade can produce $\phi \rightarrow K^+K^-$ or $\eta \rightarrow \pi^+\pi^-$

Flavour tagging at production

pp collider (e.g. LHCb)

- **Opposite-side tagging (OST):** Tag the flavour of the "other" *b*
 - Rationale: $b\overline{b}$ produced in pp interactions
 - Flavour tag with $l/K/\pi$ of a displaced vertex not associated to the signal *B* vertex
 - "Charge" of a displaced vertex not associated to the signal *B* vertex
- Same-side tagging (SST): Tag the flavour of the signal *B*
 - Rationale: sign of $l/K/\pi$ from primary vertex often correlated with the flavour
 - Example: zero net strangeness in $pp \rightarrow$ sign of the *K* associated with signal B_s gives the sign of the other $s \rightarrow$ tag the flavour of the B_s

Flavour tagging at production

Flavour tagging performance

- Flavour tagging efficiency: ε_{tag}
- Mistag probability (initial and final): $\omega_{i,f}$ [usually $\omega_f \ll \omega_i$]
- Dilution factor: $D \equiv (1 2\omega) \equiv (1 2\omega_i)(1 2\omega_f)$
- Effective tagging efficiency: $Q \equiv \varepsilon_{tag} D^2$ ["figure of merit"]

LHCb (example OST per different B signal channels summed up on many tagging categories)

Channel	$\varepsilon_{\mathrm{tag}}$ [%]	ω [%]	$arepsilon_{ ext{tag}} \mathcal{D}^2 [\%]$
$B^+ \to J/\psi K^+$	27.3 ± 0.1	$36.1\pm0.3\pm0.8$	$2.10 \pm 0.08 \pm 0.24$
$B^0 \rightarrow J/\psi K^{*0}$	27.3 ± 0.3	$36.2\pm0.3\pm0.8$	$2.09 \pm 0.09 \pm 0.24$
$B^0 \rightarrow D^{*-} \mu^+ \nu_\mu$	30.1 ± 0.1	$35.5\pm0.3\pm0.8$	$2.53 \pm 0.10 \pm 0.27$
$B_s^0 \rightarrow J/\psi \phi$	24.9 ± 0.5	$36.1\pm0.3\pm0.8$	$1.91 \pm 0.08 \pm 0.22$

CP violation in decay: measurement

- *CP* asymmetries in charged *B* mesons has been observed in several decay modes
- *Example:* charmless three-body decay modes $B^{\pm} \to K^{\pm}\pi^{+}\pi^{-}, B^{\pm} \to K^{\pm}K^{+}K^{-}, B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}$ measured by LHCb

Measument of B_s^0 mixing parameters

- Time dependent analysis to measure Δm_s
- Steps:
 - **Reconstruct** B_s^0
 - **Measure** the decay (proper) time for each B_s^0
 - Tag the flavour of the B_s^0 (either B_s^0 or \overline{B}_s^0) at production and decay
 - Identify the B_s^0 candidate: unmixed (same flavour at production & decay), mixed (different flavour)
 - Fit to the time distribution separately for mixed and unmixed B decays

$$\Rightarrow$$
 bin entries $\propto \mathcal{P}(t) \approx e^{-\Gamma_S t} \left[\cosh\left(\frac{\Delta\Gamma_S t}{2}\right) \pm \cos(\Delta m_S t) \right]$

B_s^0 reconstruction

- Selection based on displaced vertex and track kinematic • quantities
- Flavour tagging at both production and decay ٠

Δm_s measurement

- LHCb B_s^0 mixing measurement using $B_s^0 \rightarrow D_s^- \pi^+$ decays
- Experimental proper time distribution after selection and flavour tagging:

$$\Delta m_s = 17.7683 \pm 0.0051 \pm 0.0032 \text{ ps}^{-1}$$

- Simultaneous fit to the invariant masses and decay time distributions separated per flavour
- Description of decay time resolution essential because time resolution smaller, but not negligible with respect to the oscillation period (~0.35 ps)

Take home message

- Flavour physics is a very important branch of particle physics research
 - offers unique insights into the flavour structure of the SM and has unprecedented indirect sensitivity to NP at high energies
 - CKM tests, meson mixing and oscillations, CP violation provide precision tests of the SM
- *B* physics offers unique experimental challenges
 - main features and difficulties associated with using hadron and lepton machines for *B* physics measurements
 - important complementarity between the different experimental approaches
 - flavour tagging at production and decay, proper decay time reconstruction
- Due to the limited time, I could only cover a limited number of interesting observables and experimental techniques
- Plenty of amazing results from LHCb and *B* factories so far and many more to come in the coming decades!