Charting the Landscape of the Early Universe

Julia Harz

Johannes Gutenberg University, Mainz

August 6th 2024 PSI Particle Physics Summer School, Lyceum Alpinum Zuoz

Outline

I. The Early Universe in a nutshell

II. From the Cosmos to the lab: Dark Matter and Baryogenesis

III. Gravitational Waves as Window to the Early Universe

I The Early Universe in a Nutshell

Charting the Landscape of the Early Universe Julia Harz 4 credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA), CC BY 4.0

What is our Universe made of?

Charting the Landscape of the Early Universe Julia Harz 5 credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA), CC BY 4.0

Galaxies

credit: NASA, ESA, and B. Holwerda (University of Louisville), CC BY 4.0

Our solar system

credit: NASA/JPL

Our earth

credit: NASA/JPL

Structure in our vicinity

Charting the Landscape of the Early Universe Julia Harz 9 credit: Rosino, CC-BY-SA-2.0 (Ausschnitt)

Molecules

Charting the Landscape of the Early Universe Julia Harz 10 ● **credit: allispossible.org.uk, CC BY 2.0**

Atoms and their smallest constituents

Atoms and their smallest constituents

Quelle: Arpad Horvath, CC BY-SA 2.5

 \mathbf{U}

proton (baryon)

Charting the Landscape of the Early Universe Julia Harz 12 istock.com/Rost-9D

The Standard Model (SM) of particle physics

source: Welt der Physik / DESY

How did this all evolve?

History of the Universe

Universe Visible the σ Radius

The homogeneous and isotropic Universe

At large scales

- **Homogeneous** (same at every point, translational invariance)
- **Isotropic** (same in all directions, rotational invariance)

Experimental evidence: cosmic microwave background, galaxy distribution

Described by **Friedmann-Robertson-Lemaitre-Walker (FRLW)** metric

k= +1 spatially curved (spherical)

k= 0 spatially flat (euclidean)

k= -1 spatially curved (hyperbolic)

Scale factor a(t)

 $ds^2 = dt^2 - a^2(t) \left[\frac{dr^2}{1 - kr^2} + r^2(d\theta^2 + sin^2\theta d\phi^2) \right]$

The expanding Universe

- For k=0, choose normalization (today): **a(t⁰)=a0=1**
- **Hubble parameter** as measure of the shrinking / expansion of the Universe

$$
H = \frac{\dot{a}}{a}, H_0 \equiv \dot{a}(t_0)
$$

Physical distances can be described as

 $R = a(t) \cdot r$

● **Hubble's law:** $v \simeq H_0 d$

Galaxies are receding away from us with a velocity that is proportional to their distance to us:

 $v \propto \dot{a}(t) d$ → **Universe is expanding!**

Matter & Energy Content of the Universe

Dynamics of the scale factor a(t) depends on matter and energy content of the Universe

- Einstein equation: $G_{\mu\nu}=8\pi GT_{\mu\nu}$
- Perfect fluid (homogeneous and isotropic): $T_{\mu\nu} = (\rho + p)U_{\mu}U_{\nu} pg_{\mu\nu}$

 $U^{\mu} = (1,0,0,0)$ $q_{\mu\nu} = (1, -a^2, -a^2, -a^2)$

$$
T_{\mu\nu} = \begin{pmatrix} \rho & 0 \\ 0 & -pg_{ij} \end{pmatrix}
$$

Friedmann equations

$$
H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{1}{3}\rho - \frac{k}{a^{2}}
$$
expansion

$$
H^{2} + \dot{H} = \frac{\ddot{a}}{a} = -\frac{1}{6}(\rho + 3p)
$$
acceleration

Evolution of the Matter & Energy Content

Evolution in terms of equation of state parameter $\omega = \frac{p}{\tau}$

$$
\frac{d\rho}{dt} + 3H(\rho + p) = 0
$$

$$
\rho(a) \propto a(t)^{-3(1+\omega)}
$$

Energy content of the early Universe

Matter & Energy Content of today's Universe

Connecting to observable parameters

The Flatness Problem

Evolution of flatness parameter

$$
\frac{d}{dt}(\varOmega_k)=-2\frac{\ddot{a}}{\dot{a}}\varOmega_k
$$

 $\ddot{a} < 0$ for radiation and matter domination

Today's Universe flat to a very good accuracy $|\Omega_k(t_0)| \leq 0.0007$

For radiation and matter domination this would imply $|\Omega_k(t_{\rm Pl})| \leq 10^{-60}$

→ why is the Universe so flat? Extreme fine-tuning would have been required!

However, if $\ddot{a} > 0$, small values would be approached dynamically

→ accelerated expansion via inflation!

Concept of Inflation

Introduce scalar inflaton field with

$$
\rho_{\Phi} = \frac{1}{2}\dot{\Phi}^2 + V(\Phi) \qquad p_{\Phi} = \frac{1}{2}\dot{\Phi}^2 - V(\Phi)
$$

$$
H^{2} + \dot{H} = \frac{\ddot{a}}{a} = -\frac{1}{6} (\rho + 3p) > 0
$$

$$
p < -\frac{1}{3}\rho
$$

This is fulfilled when the potential energy dominates over the kinetic energy: slow roll inflation

$$
V(\Phi) \gg \dot{\Phi}^2
$$

$$
\omega = \frac{p_{\Phi}}{\rho_{\Phi}} = -1
$$

Slow roll approximation for Inflation

Slow-roll parameters define the end of inflation:

$$
\epsilon = -\frac{\dot{H}}{H^2} = -\frac{3\dot{\phi}^2}{2\rho} < 1 \qquad |\eta| = \left|\frac{\dot{\epsilon}}{\epsilon H}\right| < 1
$$
\n
$$
\epsilon_V \equiv \frac{M_{\rm Pl}^2}{2} \left(\frac{V'}{V}\right)^2 < 1 \qquad \eta_V \equiv M_{\rm Pl}^2 \left(\frac{V''}{V}\right) < 1 \qquad \sum_{0.4}^{\infty} \epsilon_V \approx 0.0
$$
\nOscillations

 $1.0 -$

 0.2

 0.0 -2

Length of inflation measured by numbers of efolds:

$$
N(\varPhi) = \int_{t_i}^{t_\text{end}} H dt
$$

Charting the Landscape of the Early Universe Julia Harz 23

 $\overline{2}$

 $\Phi/M_{\rm Pl}$

 Ω

E. Copello

Slow-roll inflation

 Λ

Linking to observables and cosmological data

Spectral index

describes dependence of the amplitude of the density perturbations on their wave length

$$
A_{s,\star} = (2.1 \pm 0.1) \times 10^{-9}
$$
\n
$$
n_s = 0.9659 \pm 0.0040
$$
\n
$$
r_{0.05} < 0.035, \qquad 95\% \text{ C.L.}
$$
\nCharting the Landscape of the Early Universe

\nJulia Harz

\n24

Experimental constraints can be evaluated by

 $m = 16$

$$
r = 10 \text{eV}
$$

$$
n_s = 1 - 6\epsilon_V + 2\eta_V
$$

$$
A_{s,\star} = \frac{V}{24\pi^2 \epsilon_V M_{\text{Pl}}^4}
$$

and compared with

 JG U

JOHANNES GUTENBERG

UNIVERSITÄT MAINZ

Reheating

At end of inflation, inflaton oscillates and transmits energy to SM particles = reheating

$$
\left\langle \dot{\rho}_{\varPhi}\right\rangle +3H\left\langle \rho_{\varPhi}\right\rangle =- \varGamma_{\varPhi}\left\langle \rho_{\varPhi}\right\rangle
$$

 $\Gamma_{\Phi\to F\bar{F}}=\frac{y^2}{8\pi}m_\Phi$ $\Gamma_{\Phi \to XX^\dagger} = \frac{g^2}{8\pi m_\Phi}$ **The reheating temperature Trh is defined as** $\rho_{\Phi}(a_{\rm rh}) = \rho_R(a_{\rm rh})$ $\ln a$ a_k

Charting the Landscape of the Early Universe Julia Harz 25

 $\boldsymbol{a}_{\text{rh}}$

 $\boldsymbol{a}_{\rm eq}$

 $\boldsymbol{a_0}$

 $\boldsymbol{a}_{\mathrm{end}}$

Inflation

- Accelerated expansion of the Universe
- New physics (particle) needed
- New particle will decay into standard model particles
- Hot plasma of standard model particles

Charting the Landscape of the Early Universe Julia Harz ²⁷ p

History of the Universe

Big Bang Nucleosynthesis

- Forming of heavy nuclei
- Irreversible as soon as photons are not able to break up deuterium again

 $\eta_R^{\rm obs} = (6.143 \pm 0.190) \times 10^{-10}$

History of the Universe

Universe Visible the σ Radius

The cosmic microwave background

- Recombination indicates the moment when stable atoms are formed and photons can freely move
- The **cosmic microwave background** consists out of these photons

before recombination before recombination

The cosmic microwave background

The cosmic microwave background

Contribution of baryons to today's total energy density

The Baryon Asymmetry – combining BBN and CMB

Baryon asymmetry confirmed by *two* **independent measurements from** *different* **times of the early Universe**

The Baryon Asymmetry – combining BBN and CMB

Baryon asymmetry confirmed by *two* **independent measurements from** *different* **times of the early Universe**

The Puzzle of Dark Matter

 $\Omega_{\rm CDM} h^2 = 0.120 \pm 0.001$

Contribution of dark matter to today's total energy density

 $\Omega_{\rm CDM} = 0.26$

The Puzzle of Dark Matter

 $\Omega_{\rm CDM} h^2 = 0.120 \pm 0.001$

Contribution of dark matter to today's total energy density

```
\Omega_{\rm CDM} = 0.26
```
What is dark matter?

History of the Universe

Universe Visible the σ Radius

Take-home messages I

- **→ we can describe the evolution of the early Universe with the Friedmann equations**
- **→ flatness and horizon problem point towards inflation**
- **→ CMB + BBN determines precisely the baryon asymmetry**
- **→ CMB determines accurately the DM abundance**

Open puzzles → requires new physics

II From the Cosmos to the Lab: Dark Matter and Baryogenesis

Visible Matter – the tip of the iceberg

5% visible matter

26% dark matter

69% dark energy

Charting the Landscape of the Early Universe Julia Harz 41 Image: istock.com/RomoloTavani

Landscape of dark matter candidates

C. Arina, CERN Courier, 4 March 2021

The "WIMP miracle"

WIMP – the **W**eakly **i**nteracting **m**assive **p**article

The hunt for the WIMP

Production of relic abundance (early Universe)

Indirect detection (today)

Theoretical prediction of the dark matter abundance

$$
\frac{dn}{dt} = -3Hn - \langle \sigma_{\text{eff}} v \rangle (n^2 - n_{\text{eq}}^2)
$$

temporal change of the number density of DM

expansion of the

Universe interaction with other particles

Freeze-out of dark matter

• Dark matter is in contact with the hot thermal bath of the standard model from the beginning ("in equilibrium")

Freeze-out of dark matter

● **Assumption**: WIMP as DM candidate is due to its interaction rate in thermal equilibrium with the standard model bath

Linking to PLANCK data $\boldsymbol{\mathsf{x}}$

• **Example**: Two, new dark particles with mass difference Δm

SM

Interplay of theory and experiment

• **Exclusion** of parameter space via (1) experimental data and (2) preventing DM overproduction

Becker, Copello, JH, Mohan, Sengupta (2022)

Towards new standards for the DM abundance prediction

● Improving precision of cross sections crucial for DM abundance calculation

Impact on minimal dark matter coupling strength

Identify lower bound on g_{DM} in order not to overproduce DM

- **Non-perturbative effects result in corrections on minimal g**_{DM}
- **Depending on parameter space: positive or negative correction**

Becker, Copello, JH, Mohan, Sengupta (2022)

Impact on the interpretation of experimental results

Becker, Copello, JH, Mohan, Sengupta (2022)

Impact on the interpretation of experimental results

Becker, Copello, JH, Mohan, Sengupta (2022)

Landscape of dark matter candidates

C. Arina, CERN Courier, 4 March 2021

The FIMP

● **Assumption**: FIMP as DM candidate due to its very small interaction rate not in thermal equilibrium with the standard model bath

• **BUT:** DM produced via decay of parent particle

Feeble interaction between parent particle and standard model particles!

The FIMP – freeze-in of dark matter

Characteristic signatures at the LHC

● Feeble interactions lead to **long life time** of the parent particle

Long life times lead – contrary to the WIMP – to a late or no decay within the detector!

credit: Heather Russell, McGill University 2017

Linking the early Universe with physics in the lab

DM P **SM**

Charting the Landscape of the Early Universe Julia Harz 58

Becker, Copello, JH, Lang, Xu (2023)

Constraints from LLP searches at the LHC

Example: Muonphilic Majorana DM model

$$
\frac{\Omega_{\rm DM}h^2}{0.12} \simeq \left(\frac{1.5\,{\rm m}}{c\tau}\right) \left(\frac{106.75}{g_s}\right)^{3/2} \left(\frac{m_{\rm DM}}{100\,{\rm keV}}\right) \left(\frac{200\,{\rm GeV}}{m_P}\right)^2
$$

\$\times \left\{ \begin{array}{l} \displaystyle \frac{2k+4}{3}\left(\frac{T_{\rm rh}}{m_P}\right)^{4k-1}{\cal I}_{\rm rh,b}+{\cal I}_{\rm RD}^0\quad\text{in BR}\\ \displaystyle \frac{2k+4}{3k-3}\left(\frac{T_{\rm rh}}{m_P}\right)^{\frac{9-k}{k-1}}{\cal I}_{\rm rh,f}+{\cal I}_{\rm RD}^0\quad\text{in FR} \end{array} \right. ,\label{eq:Delta}

$$
V(\varPhi)=\lambda\frac{|\varPhi|^k}{M^{k-4}}
$$

→ Dependence on reheating temperature of the Universe!

Becker, Copello, JH, Lang, Xu (2023)

Constraints on the reheating temperature from inflation

\rightarrow **spectral index sets lower limit on T**

Becker, Copello, JH, Lang, Xu (2023)

Linking the early Universe with physics in the lab

Becker, Copello, JH, Lang, Xu (2023)

Linking the early Universe with physics in the lab

Becker, Copello, JH, Lang, Xu (2023)

Take-home messages II

- **→ DM can span a large range of masses and interaction strengths**
- **→ WIMP not yet dead**
- **→ non-perturbative effects can crucially impact our interpretation of experimental limits**
- **→ FIMPs feature interesting links between collider physics and cosmology (holistic approach!)**
- **→ ask me about effects from the thermal plasma on dark matter production, in case of interest ;-)**

Why do we exist?

Why is there more matter than antimatter?

Theoretically, we know the conditions on interactions that have to be fulfilled (Sakharov conditions).

baryon number violation

Theoretically, we know the conditions on interactions that have to be fulfilled (Sakharov conditions).

SM?

baryon number violation

SM sphaleron interactions

$$
\Delta L = \Delta B = 3
$$

highly active above T_{EW}

$$
\frac{\Gamma_{\text{SM}}^b}{V} \sim \exp\left(-\frac{4\pi}{g_w}\frac{v_c}{T}\right)
$$

 $\frac{\Gamma_{\text{SM}}^s}{V} \sim \alpha_w^5 T^4$

in broken phase suppressed

in symmetric phase active

Theoretically, we know the conditions on interactions that have to be fulfilled (Sakharov conditions).

baryon number violation

Charge conservation: SM?

$$
\Gamma(X \to AB) = \Gamma(\overline{X} \to \overline{A} \ \overline{B})
$$

C and CP violation

Requirement of charge violation:

$$
\frac{dY_B}{dt} \approx \Gamma(X \to AB) - \Gamma(\overline{X} \to \overline{A} \ \overline{B})
$$

Theoretically, we know the conditions on interactions that have to be fulfilled (Sakharov conditions).

baryon number violation

Charge and parity conservation: SM?

$$
\Gamma(X \to q_L q_L) = \Gamma(\overline{X} \to \overline{q}_R \ \overline{q}_R)
$$

$$
\varGamma(X \to q_R q_R) = \varGamma(\overline{X} \to \overline{q}_L \ \overline{q}_L)
$$

C and CP violation

Requirement of charge and parity violation:

$$
\frac{dY_B}{dt} \approx \left[(\Gamma(\overline{X} \to \overline{q}_R \ \overline{q}_R) + \Gamma(\overline{X} \to \overline{q}_L \ \overline{q}_L) \right) - (\Gamma(X \to q_R q_R) + \Gamma(X \to q_L q_L)) \right]
$$

Theoretically, we know the conditions on interactions that have to be fulfilled (Sakharov conditions).

SM?

baryon number violation

Quark sector exhibits CP violation (CPV)

$$
|K_S^0\rangle = \frac{1}{\sqrt{1+|\epsilon|^2}} \left(|K_1^0\rangle + \epsilon | \bar{K}_2^0 \rangle \right)
$$

$$
|K_L^0\rangle = \frac{1}{\sqrt{1+|\epsilon|^2}} \left(|K_2^0\rangle + \epsilon | \bar{K}_1^0 \rangle \right)
$$

$$
\frac{J_{CP}}{T_C^{12}} \approx 10^{-20} \quad \Longleftrightarrow \quad \mathcal{O}(10^{-10})
$$

not enough CP violation within SM!

Theoretically, we know the conditions on interactions that have to be fulfilled (Sakharov conditions).

SM?

baryon number violation

C and CP violation

Departure from thermal equilibrium:

- First order phase transition (FOPT)
- Out-of-equilibrium decays

departure from thermal equilibrium

Theoretically, we know the conditions on interactions that have to be fulfilled (Sakharov conditions).

baryon number violation

Strong FOPT during EWSB:

$$
\frac{v_c}{T_c} \simeq \frac{3g^3v^2}{32\pi^2m_h^2} \ge 1
$$

$$
m_h \le 32 \text{GeV}
$$

→ Higgs too heavy for first order phase transition

departure from thermal equilibrium

l IGlu
Why do we need new physics?

● **Three theoretical conditions have to be fulfilled ("Sakharov conditions")**

● **The Standard Model cannot accommodate them all**

→ guarantee for new physics!

Basic principle of baryogenesis

Two complementary strategies to scientifically progress:

- searching for new physics sourcing baryon asymmetry (identifying promising models)
- **finding new physics depleting asymmetry (exclusion of models)**

Basic principle of leptogenesis

Basic principle of leptogenesis

Probing LNV interactions

- **→ Important complementarity between collider and 0vββ decay reach**
- **→ Observation of TeV LNV would falsify standard thermal LG !**

JH, Ramsey-Musolf, Shen, Urrutia-Quiroga (2021)

Probing LNV with invisible Meson Decays

What if experiments point towards a deviation from the SM expectation?

As neutrinos are not explicitly measured, a new physics contribution could also be lepton number violating!

νL

νL

Probing LNV with invisible Meson decays

Allow for a NP scalar or vector contribution additionally to the SM such that the experimental upper bound

 $\mathcal{B}(K^+\to\pi^+\nu\bar{\nu})=1.55\times10^{-10}$ is saturated.

→ NP scalar contribution leads to a striking difference in the distribution when comparing to vector only

→ ask me about our analysis for invisible B decays, in case of interest ;-)

Buras, JH, Mojahed (2024) Deppisch, Fridell, JH (2020)

Take-home messages III

- **→ Sakharov conditions to be fulfilled to generate baryon asymmetry**
- **→ direct tests possible for low-scale BG, only indirect tests for high-scale BG**
- **→ 0vbb decay, LHC, meson decays relevant for high-scale leptogenesis**
- **→ even meson decays into invisible final state can be useful (but not alone)**

→ ask me about the impact of n-nbar-oscillations, LHC, meson oscillations relevant for high-scale baryogenesis, in case of interest ;-)

III Gravitational Waves as Window to the Early Universe

New era of physics - first direct GW observation

On 14th of September 2015, first direct observation (GW150914) of a GW by LIGO Hanford and Livingston observatories.

Signal vs stochastic gravitational wave background

Can we directly observe sources from the early Universe?

The signal of a GW source at time t_* cannot produce a signal with correlated length / time scales larger than the causal horizon at that time

 $\ell_* \leq H_*^{-1}$

Angular resolution needed for correlated GW signal at t_{\star}

$$
\theta = 360^{\circ} \cdot \left(\frac{2\pi d_H(t_0)}{2d_H(t_*)z_*}\right)^{-1}
$$

GW detector with angular resolution of 10 deg can only resolve events up to z* < 20! → *Stochastic* **Gravitational Wave Background (SGWB)**

GW opens up new window to the early Universe

Tensor perturbations from early Universe events lead to gravitational wave imprints

$$
ds^2 = -dt^2 + a^2(t)(\delta_{ij} + h_{ij})dx^i dx^j
$$
\n
$$
\partial_i h_{ij} = h_{ii} = 0
$$

$$
\ddot{h_{ij}}(\mathbf{x},t) + 3H\dot{h}_{ij}(\mathbf{x},t) - \frac{\nabla^2}{a^2}h_{ij}(\mathbf{x},t) = 16\pi G\Pi_{ij}(\mathbf{x},t)
$$

What can source a SGWB?

Inflation

Temperature Fluctuations

First Order Phase Transition

Reheating (particle production)

Topological Defects (e.g. cosmic strings)

Charting the Landscape of the Early Universe Julia Harz 86

\mathfrak{g}

 $\ddot{h_{ij}}(\mathbf{x},t)+3H\dot{h}_{ij}(\mathbf{x},t)-\frac{\nabla^2}{a^2}h_{ij}(\mathbf{x},t)=0$

Power spectrum of scalar (density fluctuations) and tensor (GWs) perturbations

$$
\phi(\mathbf{x},t) = \overline{\phi}(t) + \delta\phi(\mathbf{x},t)
$$

$$
\eta_{\mu\nu}(\mathbf{x},t) = \overline{g}_{\mu\nu}(t) + h_{\mu\nu}(\mathbf{x},t)
$$

So far we assumed "classical" scalar field without quantum fluctuations

Example: Inflation

JOHANNES GUTENBERG

UNIVERSITÄT MAINZ

 $|JG|$ U

Example: Inflation

Example: Inflation

Plethora of GW experiments

Pulsar Timing Arrays (e.g. NanoGrav, ...)

Space based interferometers (e.g. LISA, ...)

Earth based interferometers (e.g. LIGO/Virgo,...)

Example: First order phase transition

$$
\ddot{h_{ij}}(\mathbf{x},t) + 3H\dot{h}_{ij}(\mathbf{x},t) - \frac{\nabla^2}{a^2}h_{ij}(\mathbf{x},t) = 16\pi G\Pi_{ij}(\mathbf{x},t)
$$

Bubble wall collisions:

 $\Pi_{ij} \sim [\partial \phi_i \partial \phi_j]^{TT}$

Sound waves and turbulence:

$$
\mathbf{P:} \qquad \Pi_{ij} \sim [\gamma^2 (\rho + p) v_i v_j]^{TT}
$$

Primordial magnetic fields (MHD turbulence): $\Pi_{ij} \sim [-E_i E_j - B_i B_j]^{TT}$

Example: First order phase transition

Characteristic frequency connected to bubble size:

$$
f = f_* \frac{a_*}{a_0} = \frac{1.65 \times 10^{-7}}{\ell_* H_*} \left(\frac{g(T_*)}{100}\right)^{1/6} \frac{T_*}{\text{GeV}} \text{Hz}
$$

Implications on detectability:

$$
T_{\rm EW} \sim 100 {\rm GeV} \qquad \ell_* H_* \simeq 0.01 \Longrightarrow f \sim {\rm mHz} \qquad {\rm LISA}
$$

$$
T_* \sim 0.1 \text{GeV}
$$
 $\ell_* H_* \simeq 0.1 \Longrightarrow f \sim 10 \text{nHz}$ PTA

Sphaleron freeze-in BG with GWs from QCD transition

Gao, Harz, Hati, Lu, Oldengott, White (2024)

Sphaleron freeze-in BG with GWs from QCD transition

Idea: Large Lepton asymmetry restores EW symmetry and can lead to first order QCD transition

- **Large lepton asymmetry** leads to **restoration of EW symmetry** at large temperatures
- restoration of EW symmetry renders **sphaleron transitions inefficient** and slowly translate large lepton asymmetry into a baryon asymmetry
- Constraints on large lepton asymmetry from CMB and BBN and neutrino oscillations (flavour equilibrations): due to charge neutrality, **asymmetry must "hide" in neutrino sector**
- **Correct baryon asymmetry** only possible with additional **entropy dilution**
- Large lepton asymmetry can lead to first order QCD phase transition
- First order QCD phase transition can lead to **GWs**

Gao, Harz, Hati, Lu, Oldengott, White (2024)

Sphaleron freeze-in BG with GWs from QCD transition

Gao, Harz, Hati, Lu, Oldengott, White (2024)

Take-home messages IV

- **→ SGWB is a window to early Universe physics (inflation, reheating, phase transitions, topological defects,...)**
- **→ earth based and space based experiments cover different frequencies**
- **→ exciting new complementary possibilities ahead**

Conclusions

- **Inflation, dark matter, the baryon asmmetry and neutrinos are four of the biggest puzzles of modern (astro)particle physics**
- **Novel theoretical strategies needed to discover new physics**
- **Cutting-edge methods needed for accurate theory predictions and correct experimental interpretation**
- **Crucial interplay with experiments not to leave any stone unturned**

Exciting complementary insights from the early Universe and laboratory experiments!

Thank you for your attention!

[NASA,](http://www.nasa.gov/) [ESA](http://www.spacetelescope.org/), and J. Lotz, M. Mountain, A. Koekemoer, and the HFF Team ([STScI](http://www.stsci.edu/))

Future prospects

- **HSPC not strict exclusion limit (BSF@LHC is!)**
- **Highly testable: parameter space can be almost entirely probed**
- **BSF effects enlarge parameter range that still needs to be tested**

Becker, Copello, JH, Mohan, Sengupta (2022)

Towards new standards for the DM abundance

→ **first thermal description at NLO** of bound state formation beyond ionisation equilibrium in the WIMP paradigm

→ **improves** the unphysical log-enhanced Boltzmann approach **for massless mediators**

Binder, Blobel, **JH**, Mukaida (2020)

State-of-the art

- **Different treatments can be found in the literature**
	- Boltzmann approach with decays in vacuum only
	- Boltzmann approach with decays only including thermal masses
	- Boltzmann approach with decays and scattering including thermal masses
	- Non-equilibrium approach with tree-level propagators
	- Non-equilibrium approach with HTL approximated propagators

→ How do different treatments in the literature compare?

→ What is the *correct* **result?**

Advancing methods: calculation from first principles

● **Calculate freeze-in within non-equilibrium framework (closed time path formalism) with 1PI-resummed propagators at LO in the loop expansion of 2PI effective action**

$$
\dot{n}_{\rm DM}(t)+3Hn_{\rm DM}=\frac{1}{2\pi^2}\int d|\vec{p}|\frac{|\vec{p}|^2}{E_{\rm DM}}\varPi_{\rm DM}^A(E_{\rm DM},|\vec{p}|)f_{\rm DM}(E_{\rm DM})
$$

Becker, Copello, JH, Tamarit (2023)

Advancing methods: calculation from first principles

● **Calculate freeze-in within non-equilibrium framework (closed time path formalism) with 1PI-resummed propagators at LO in the loop expansion of 2PI effective action**

• With generic coupling G: F-A-A $G = Y^2 g_1^2 + C_2 (\mathcal{R}_2) g_2^2 + C_2 (\mathcal{R}_3) g_3^2$

Advancing methods: thermal corrections

 $S^{\mathcal{A}}\sim$

- **In vacuum** $\delta(k^2-m_0^2)$
- **With thermal masses** $\delta(k^2 m_{\text{th}}^2)$
- **HTL approximation** $\delta(k^2 - \Sigma^{\mathcal{H}}(k)) + \mathcal{S}_{\text{cont.}}^{\mathcal{A}}$
- **1PI resummed** $(k - \Sigma^{\mathcal{H}}(k)) \frac{\Gamma(k)}{\Omega^2(k) + \Gamma^2(k)} - \Sigma^{\mathcal{A}}(k) \frac{\Omega(k)}{\Omega^2(k) + \Gamma^2(k)}$

Compared to vacuum decay only

interaction strength of P with the SM bath

 (0.12) doe yng (0.12) full .

- Ω_{DM} strongly underestimated for small mass splittings
- Ω_{DM} (accidentally) correct for larger mass splittings

Normalized relative mass difference between P and DM

Becker, Copello, JH, Tamarit (2023)

Compared to decays with thermal masses

interaction strength of P with the SM bath

- Ω_{DM} strongly underestimated for small mass splittings
- Ω_{DM} (accidentally) correct for larger mass splittings
- **Thermal masses increase the deviation**

Normalized relative mass difference between P and DM

Becker, Copello, JH, Tamarit (2023)

Compared to decays and scattering with thermal masses

interaction strength of P with the SM bath

- Ω_{DM} underestimated for small mass splittings
- Ω_{DM} strongly overestimated for large mass splittings
- **When including Fermi-Dirac / Bose-Einstein statistics in semi-classical BEQ, deviation reduced by approx. 50%**

Normalized relative mass difference between P and DM

Becker, Copello, JH, Tamarit (2023)

Compared to HTL approximation

interaction strength of P with the SM bath

 (0.12) HTL (0.12) full $-$

- Ω_{DM} strongly overestimated for small mass splittings
- Ω_{DM} at percent level correct for large mass splittings
- Larger deviations for larger G
- **first consistent thermal calculation valid throughout all the relevant freeze-in regime**
- **significant corrections on Ω_{ρΜ} dependent on mass splitting and gauge coupling G**

Normalized relative mass difference between P and DM

Becker, Copello, JH, Tamarit (2023)

Impact of thermal corrections on freeze-in DM production

Including Landau-Pomeranchuk-Migdal (LPM) effect

JOHANNES GUTENBERG $|JG|$ U **UNIVERSITÄT MAINZ**

Charting the Landscape of the Early Universe Julia Harz 109

Probing baryogenesis

• **Goal:** Search for washout processes,

e.g. (CP-conserving) neutron-antineutron oscillations

Probing baryogenesis

Charting the Landscape of the Early Universe Julia Harz 111

Probing LNV with invisible Meson decays

→ A NP scalar contribution additionally to the SM leads to a striking difference in the distribution when comparing to a vector contribution only.

Buras, JH, Mojahed (2024)

Charting the Landscape of the Early Universe Julia Harz 112