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๏  Lecture 1 (Monday): Collider physics & strong interactions


➡ Introduction to LHC Physics & the Higgs sector


➡ Exploring the Higgs boson with Quantum Chromodynamics (QCD)


๏  Lecture 2 (Thursday): Radiative corrns & Collider observables 


➡ Infrared & Collinear (IRC) safety and differential distributions


➡ QCD beyond the standard perturbation theory


๏  Lecture 3 (Friday): Introduction to Parton Showers & Jets


➡ Building a toy parton shower for Higgs production in gluon fusion


➡ Modern event generators and hadronic jets

  Tentative outline of the lectures

Not enough time to cover in detail all the 
aspects that we’ll touch upon. Please ask 

me for extra references if you are 
interested in reading more about a topic

Disclaimer
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Collider Physics & Strong interactions



Hadronization  
& Underlying Event 

Peter Skands 
Monash University 

(Melbourne, Australia)

QCD and Event Generators 
Lecture 3 of 3
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4

  The incredibly diverse collider physics landscape

Perturbative methods

Non-perturbative QCD

Formal developments

Event generators Novel strategies (e.g. ML, new observables)

Swathes of experimental results

(…)

EFTs & New Physics models

Theory 

developments Collider  

pheno

BSM searches & jets

BSM 3
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ADD GKK + g/q 0 e, µ, τ, γ 1 − 4 j Yes 139 n = 2 2102.1087411.2 TeVMD

ADD non-resonant γγ 2 γ − − 36.7 n = 3 HLZ NLO 1707.041478.6 TeVMS

ADD QBH − 2 j − 139 n = 6 1910.084479.4 TeVMth

ADD BH multijet − ≥3 j − 3.6 n = 6, MD = 3 TeV, rot BH 1512.025869.55 TeVMth

RS1 GKK → γγ 2 γ − − 139 k/MPl = 0.1 2102.134054.5 TeVGKK mass

Bulk RS GKK →WW /ZZ multi-channel 36.1 k/MPl = 1.0 1808.023802.3 TeVGKK mass

Bulk RS gKK → tt 1 e, µ ≥1 b, ≥1J/2j Yes 36.1 Γ/m = 15% 1804.108233.8 TeVgKK mass

2UED / RPP 1 e, µ ≥2 b, ≥3 j Yes 36.1 Tier (1,1), B(A(1,1) → tt) = 1 1803.096781.8 TeVKK mass

SSM Z ′ → ## 2 e, µ − − 139 1903.062485.1 TeVZ′ mass

SSM Z ′ → ττ 2 τ − − 36.1 1709.072422.42 TeVZ′ mass

Leptophobic Z ′ → bb − 2 b − 36.1 1805.092992.1 TeVZ′ mass

Leptophobic Z ′ → tt 0 e, µ ≥1 b, ≥2 J Yes 139 Γ/m = 1.2% 2005.051384.1 TeVZ′ mass

SSM W ′ → #ν 1 e, µ − Yes 139 1906.056096.0 TeVW′ mass

SSM W ′ → τν 1 τ − Yes 139 ATLAS-CONF-2021-0255.0 TeVW′ mass

SSM W ′ → tb − ≥1 b, ≥1 J − 139 ATLAS-CONF-2021-0434.4 TeVW′ mass

HVT W ′ →WZ model B 0-2 e, µ 2 j / 1 J Yes 139 gV = 3 2004.146364.3 TeVW′ mass

HVT W ′ →WZ → #ν #′#′ model C 3 e, µ 2 j (VBF) Yes 139 gV cH = 1, gf = 0 2207.03925340 GeVW′ mass

HVT Z ′ →WW model B 1 e, µ 2 j / 1 J Yes 139 gV = 3 2004.146363.9 TeVZ′ mass
LRSM WR → µNR 2 µ 1 J − 80 m(NR) = 0.5 TeV, gL = gR 1904.126795.0 TeVWR mass

CI qqqq − 2 j − 37.0 η−LL 1703.0912721.8 TeVΛ
CI ##qq 2 e, µ − − 139 η−LL 2006.1294635.8 TeVΛ
CI eebs 2 e 1 b − 139 g∗ = 1 2105.138471.8 TeVΛ
CI µµbs 2 µ 1 b − 139 g∗ = 1 2105.138472.0 TeVΛ
CI tttt ≥1 e,µ ≥1 b, ≥1 j Yes 36.1 |C4t | = 4π 1811.023052.57 TeVΛ

Axial-vector med. (Dirac DM) − 2 j − 139 gq=0.25, gχ=1, m(χ)=10 TeV ATL-PHYS-PUB-2022-0363.8 TeVmmed

Pseudo-scalar med. (Dirac DM) 0 e,µ, τ, γ 1 − 4 j Yes 139 gq=1, gχ=1, m(χ)=1 GeV 2102.10874376 GeVmmed

Vector med. Z ′-2HDM (Dirac DM) 0 e, µ 2 b Yes 139 tan β=1, gZ =0.8, m(χ)=100 GeV 2108.133913.0 TeVmZ′

Pseudo-scalar med. 2HDM+a multi-channel 139 tan β=1, gχ=1, m(χ)=10 GeV ATLAS-CONF-2021-036800 GeVma

Scalar LQ 1st gen 2 e ≥2 j Yes 139 β = 1 2006.058721.8 TeVLQ mass

Scalar LQ 2nd gen 2 µ ≥2 j Yes 139 β = 1 2006.058721.7 TeVLQ mass

Scalar LQ 3rd gen 1 τ 2 b Yes 139 B(LQu
3 → bτ) = 1 2303.012941.49 TeVLQu

3
mass

Scalar LQ 3rd gen 0 e, µ ≥2 j, ≥2 b Yes 139 B(LQu
3 → tν) = 1 2004.140601.24 TeVLQu

3
mass

Scalar LQ 3rd gen ≥2 e, µ, ≥1 τ ≥1 j, ≥1 b − 139 B(LQd
3 → tτ) = 1 2101.115821.43 TeVLQd

3
mass

Scalar LQ 3rd gen 0 e, µ, ≥1 τ 0 − 2 j, 2 b Yes 139 B(LQd
3 → bν) = 1 2101.125271.26 TeVLQd

3
mass

Vector LQ mix gen multi-channel ≥1 j, ≥1 b Yes 139 B(Ũ1 → tµ) = 1, Y-M coupl. ATLAS-CONF-2022-0522.0 TeVLQV
3

mass

Vector LQ 3rd gen 2 e,µ, τ ≥1 b Yes 139 B(LQV
3 → bτ) = 1, Y-M coupl. 2303.012941.96 TeVLQV

3
mass

VLQ TT → Zt + X 2e/2µ/≥3e,µ ≥1 b, ≥1 j − 139 SU(2) doublet 2210.154131.46 TeVT mass

VLQ BB →Wt/Zb + X multi-channel 36.1 SU(2) doublet 1808.023431.34 TeVB mass
VLQ T5/3T5/3 |T5/3 →Wt + X 2(SS)/≥3 e,µ ≥1 b, ≥1 j Yes 36.1 B(T5/3 →Wt)= 1, c(T5/3Wt)= 1 1807.118831.64 TeVT5/3 mass

VLQ T → Ht/Zt 1 e, µ ≥1 b, ≥3 j Yes 139 SU(2) singlet, κT = 0.5 ATLAS-CONF-2021-0401.8 TeVT mass

VLQ Y →Wb 1 e, µ ≥1 b, ≥1 j Yes 36.1 B(Y →Wb)= 1, cR (Wb)= 1 1812.073431.85 TeVY mass

VLQ B → Hb 0 e,µ ≥2b, ≥1j, ≥1J − 139 SU(2) doublet, κB= 0.3 ATLAS-CONF-2021-0182.0 TeVB mass

VLL τ′ → Zτ/Hτ multi-channel ≥1 j Yes 139 SU(2) doublet 2303.05441898 GeVτ′ mass

Excited quark q∗ → qg − 2 j − 139 only u∗ and d∗, Λ = m(q∗) 1910.084476.7 TeVq∗ mass

Excited quark q∗ → qγ 1 γ 1 j − 36.7 only u∗ and d∗, Λ = m(q∗) 1709.104405.3 TeVq∗ mass

Excited quark b∗ → bg − 1 b, 1 j − 139 1910.084473.2 TeVb∗ mass
Excited lepton τ∗ 2 τ ≥2 j − 139 Λ = 4.6 TeV 2303.094444.6 TeVτ∗ mass

Type III Seesaw 2,3,4 e, µ ≥2 j Yes 139 2202.02039910 GeVN0 mass
LRSM Majorana ν 2 µ 2 j − 36.1 m(WR ) = 4.1 TeV, gL = gR 1809.111053.2 TeVNR mass

Higgs triplet H±± →W ±W ± 2,3,4 e,µ (SS) various Yes 139 DY production 2101.11961350 GeVH±± mass
Higgs triplet H±± → ## 2,3,4 e,µ (SS) − − 139 DY production 2211.075051.08 TeVH±± mass
Multi-charged particles − − − 139 DY production, |q| = 5e ATLAS-CONF-2022-0341.59 TeVmulti-charged particle mass

Magnetic monopoles − − − 34.4 DY production, |g | = 1gD , spin 1/2 1905.101302.37 TeVmonopole mass

Mass scale [TeV]10−1 1 10

√
s = 13 TeV

partial data

√
s = 13 TeV
full data

ATLAS Heavy Particle Searches* - 95% CL Upper Exclusion Limits
Status: March 2023

ATLAS Preliminary∫
L dt = (3.6 – 139) fb−1

√
s = 13 TeV

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J). 5

  The rich physics programme of the LHC

A central aspect is the search of 
new-physics (NP) phenomena, for 
which the LHC has set important 
constraints that forces us to think 

of some of the open questions 
from new angles…  

Source: ATLAS physics results (link)

e.g. scan for new phenomena (heavy 
new physics) within various models, 

with exclusion limits on NP scale

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/WebHome#Physics_Summary_Plots
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Another crucial element of the 
programme is precision physics. This 
provides an instrumental opportunity 

to a) study the fine structure of 
nature’s QFTs, and b) exploit new 

creative ways of setting  
(indirect) constraints on NP models

  The rich physics programme of the LHC Figures from 1205.6497 & 2104.06821 

e.g. precise measurements of the top and Higgs  
mass has direct implications on the stability of the 

vacuum of our universe 

V(ϕ) = − μ2ϕ2 + λϕ4
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๏  The Higgs boson plays a central role in this programme. Only fundamental (?) scalar observed so far


➡ Mass of scalar particles not protected by symmetry arguments (e.g. like for gauge bosons), and can be  
 as large as the theory cutoff (Planck scale ?)MPlanck

  What makes the Higgs boson special?

e.g. analogy with the pion (scalar, lightest hadron):

 mass is determined by the hadronic scale of the theory  (~ 300 MeV).  

Why is the Higgs boson mass so much smaller than ?
π Λ

MPlanck

mπ ∼ 130 − 140 MeV ∼ Λ mh ∼ 125 GeV ≪ MPlanck (??)

H ?π ⟨qq̄⟩
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Figure 1: Left: SM RG evolution of the gauge couplings g1 =
p
5/3g0, g2 = g, g3 = gs, of the

top and bottom Yukawa couplings (yt, yb), and of the Higgs quartic coupling �. All couplings are
defined in the MS scheme. The thickness indicates the ±1� uncertainty. Right: RG evolution of
� varying Mt, Mh and ↵s by ±3�.

the Yukawa sector and can be considered the first complete NNLO evaluation of ��(µ).

We stress that both these two-loop terms are needed to match the sizable two-loop scale

dependence of � around the weak scale, caused by the �32y4
t
g2
s
+ 30y6

t
terms in its beta

function. As a result of this improved determination of ��(µ), we are able to obtain a

significant reduction of the theoretical error on Mh compared to previous works.

Putting all the NNLO ingredients together, we estimate an overall theory error on Mh of

±1.0GeV (see section 3). Our final results for the condition of absolute stability up to the

Planck scale is

Mh [GeV] > 129.4 + 1.4

✓
Mt [GeV]� 173.1

0.7

◆
� 0.5

✓
↵s(MZ)� 0.1184

0.0007

◆
± 1.0th . (2)

Combining in quadrature the theoretical uncertainty with the experimental errors on Mt and

↵s we get

Mh > 129.4± 1.8 GeV. (3)

From this result we conclude that vacuum stability of the SM up to the Planck scale is

excluded at 2� (98% C.L. one sided) for Mh < 126GeV.

Although the central values of Higgs and top masses do not favor a scenario with a

vanishing Higgs self coupling at the Planck scale (MPl) — a possibility originally proposed

2
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  What makes the Higgs boson special?

e.g. a somewhat similar behaviour is observed in (scalar) condensates of pairs 
of electrons in a superconducting material. In this case the scalar field (Cooper 
pairs) is  just a low-energy manifestation of a more fundamental theory (BCS) 

Figure from 1205.6497 

H ?π ⟨qq̄⟩

mh ∼ 125 GeV ≪ MPlanck (??)
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  What makes the Higgs boson special?

e.g. a somewhat similar behaviour is observed in (scalar) condensates of pairs 
of electrons in a superconducting material. In this case the scalar field (Cooper 
pairs) is  just a low-energy manifestation of a more fundamental theory (BCS) 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H ?π ⟨qq̄⟩

mh ∼ 125 GeV ≪ MPlanck (??)

The Higgs boson indicates that we are living in a fine-tuned (naturalness?) and metastable 
universe (criticality?). Is there a microscopic explanation for this phenomenon?
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  The Higgs boson’s possible connection to (some) big open questions

The flavour problem: Why is there such a 
strong hierarchy between Yukawa 

couplings (fermion masses)? Are there 
flavour non-diagonal Yukawa couplings?

Dark Matter (DM): The Higgs boson could 
be part of a larger Higgs sector (Higgs 
portal). Invisible Higgs decays can be 

used to set bounds on certain DM models

EW baryogenesis: Deviations from the SM in 
the Higgs potential could unveil whether the 

EWSB was a first order phase transition.

Naturalness: Is the Higgs boson a 
(composite) condensate? Are there heavy 
top partners that could stabilise the Higgs 

mass (e.g. SUSY)?

Cosmological constant: The Higgs 
potential would lead to a large 

cosmological constant. Why is this much 
smaller in nature? 

…Higgs



๏  Interaction with EW bosons & 3rd generation fermions (Yukawa interactions) established to be SM like


➡ first exploration of some of 2nd generation Yukawa interactions ongoing

10

 Is it the SM Higgs boson? e.g. interaction with SM particles

gluon

top quark

top anti-quark

Higgs boson

gluon

quantum 
fluctuation  

(top-antitop)
two gluons collide 

(one from each proton)

time

Z boson

Z boson

�+

��

e+

e�

Higgs-boson  
 decay products

Z-boson and other 
backgrounds

Higgs signal

Figure 3: Higgs production at the LHC. Left: Illustration of one process for the production and
decay of a Higgs boson at the LHC. Right: total centre-of-mass energy of four leptons (electrons
and/or muons and their anti-particles); the peak around 125GeV corresponds to decays of Higgs
bosons, while the peak near 91.2GeV corresponds to decays of single Z bosons (not Higgs-induced),
adapted from Ref. [16]. The decay to Z bosons was one of the channels used for the Higgs boson
discovery, with the other important discovery channels being the decay to two W bosons and that
to two photons (the latter proceeds via a quantum fluctuation with top quarks and W bosons).
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Figure 4: Status of our knowledge of Higgs interactions with known particles. Left:
summary of which Higgs interactions have been conclusively established and future prospects.
Photons and gluons are omitted because they are massless and do not interact directly with the
Higgs field. Neutrinos are also omitted: their masses are very small relative to those of the other
leptons shown, and not individually known. Right: plot of measured strength of interaction of
particles with the Higgs boson versus particle mass, as determined by the ATLAS Collaboration
(adapted from Ref. [17]). The straight line shows the expected Standard Model (SM) behaviour,
where the interaction strength is proportional to the mass of the fermions (squared mass for W

and Z bosons). The CMS Collaboration has similar results [18].

5

Figure from The Higgs boson turns 10 2207.00478
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13th ICFA Seminar, Hamburg, November 2023Gavin Salam

Higgs potential

29

➤ this is a cartoon 

➤ caution needed: e.g. realistic 
BSM models do not just 
modify the potential, but 
may bring extra scalars 
(often modify other couplings, but not 
always, e.g. 2209.00666) 

➤ even if we take the picture 
seriously we may want to 
consider impact of limited 
constraints on  
(figures show either SM or FCC-hh 
constraint; how many coincidences are 
needed for a BSM model to leave  
untouched while modifying ?)

λ4

λ3
λ4
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λ4

λ3
λ4

The exploration of the Higgs sector is a 
mandatory step on the path towards the  

next discovery in particle physics!

Figures from G. Salam’s talk at ICFA 2023

e.g. Display of current vs. future constraints on Higgs trilinear coupling (with )λ4 = SM

V(ϕ) = − μ2 ϕ2 + λ ϕ4 ⊃ λv2
⏟

m2
h

2

h2 + λv⏟
λ3

h3 +
λ
4
⏟
λ4

h4
EWSB

Future colliders necessary for stringent constraints & direct 
measurement. Present LHC data shows λ3 ≲ 6 × SM

At present not clear how to measure this

 Is it the SM Higgs boson? e.g. the potential



๏  The goal of these lectures is to explore the main concepts used in the theoretical description of collider 
events. We will take a learn-by-doing approach, using the Higgs boson as a concrete example
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  Goal of these lectures

e.g. A few snapshots of the Higgs observation papers:

CMS Collaboration / Physics Letters B 716 (2012) 30–61 33

For a given value of mH, the search sensitivity depends on the
production cross section, the decay branching fraction into the
chosen final state, the signal selection efficiency, the mass reso-
lution, and the level of background from identical or similar final-
state topologies.

Samples of MC events used to represent signal and background
are fully simulated using geant4 [103]. The simulations include
pileup interactions matching the distribution of the number of
such interactions observed in data. The description of the Higgs
boson signal is obtained from MC simulation using, for most of
the decay modes and production processes, the next-to-leading-
order (NLO) matrix-element generator powheg [104,105], inter-
faced with pythia 6.4 [106]. For the dominant gluon–gluon fu-
sion process, the transverse momentum spectrum of the Higgs
boson in the 7 TeV MC samples is reweighted to the next-to-
next-to-leading-logarithmic (NNLL) + NLO distribution computed
with hqt [71,72,107] and FeHiPro [108,109], except in the H → ZZ
analysis, where the effect is marginal. The agreement of the pT
spectrum in the simulation at 8 TeV with the NNLL + NLO distri-
bution makes reweighting unnecessary. The improved agreement
is due to a modification in the powheg setup recommended in
Ref. [102]. The simulation of associated-production signal sam-
ples uses pythia and all signal samples for H → bb are made
using powheg interfaced to herwig++ [110]. Samples used for
background studies are generated with pythia, powheg, and Mad-
Graph [111], and the normalisations are obtained from the best
available NNLO or NLO calculations. The uncertainty in the signal
cross section related to the choice of parton distribution functions
is determined with the PDF4LHC prescription [96–100].

The overall statistical methodology [112] used in this Letter was
developed by the CMS and ATLAS Collaborations in the context of
the LHC Higgs Combination Group. A more concise summary of
CMS usage in the search for a Higgs boson is given in Ref. [21].
The modified frequentist criterion CLs [113,114] is used for the
calculation of exclusion limits. Systematic uncertainties are incor-
porated as nuisance parameters and are treated according to the
frequentist paradigm. The combination of searches requires simul-
taneous analysis of the data selected by all individual analyses,
accounting for all statistical and systematic uncertainties and their
correlations. The probability for a background fluctuation to be at
least as large as the observed maximum excess is termed the lo-
cal p-value, and that for an excess anywhere in a specified mass
range the global p-value. This probability can be evaluated by
generating sets of simulated data incorporating all correlations be-
tween analyses optimized for different Higgs boson masses. The
global p-value (for the specified region) is greater than the local
p-value, and this fact is often referred to as the look-elsewhere
effect (LEE) [115]. Both the local and global p-values can be ex-
pressed as a corresponding number of standard deviations using
the one-sided Gaussian tail convention. The magnitude of a pos-
sible Higgs boson signal is characterised by the production cross
section times the relevant branching fractions, relative to the SM
expectation, denoted σ /σSM and referred to as the signal strength.
The results presented in this Letter are obtained using asymp-
totic formulae [116], including updates recently introduced in the
RooStats package [117].

Fig. 1 shows the expected local p-values in the mass range 110–
145 GeV for the five decay modes reported here. The expected
significance of a SM Higgs boson signal at mH = 125 GeV when
the five decay modes are combined is 5.6σ . The highest sensitivity
in this mass range is achieved in the ZZ, γ γ , and WW channels.
Because of the excellent mass resolution (1–2 GeV) achieved in the
γ γ and ZZ channels, they play a special role in the low-mass re-
gion, where the natural width of the SM Higgs boson is predicted
to be less than 100 MeV. The expected signature in these channels

Fig. 1. Expected local p-values for a SM Higgs boson as a function of mH, for the
decay modes γ γ , ZZ, WW, ττ , and bb and their combination.

is therefore a narrow resonance above background, with a width
consistent with the detector resolution.

5. Decay modes with high mass resolution

5.1. H → γ γ

In the H → γ γ analysis a search is made for a narrow peak
in the diphoton invariant mass distribution in the range 110–
150 GeV, on a large irreducible background from QCD production
of two photons. There is also a reducible background where one
or more of the reconstructed photon candidates originate from
misidentification of jet fragments. Early detailed studies indicated
this to be one of the most promising channels in the search for
a SM Higgs boson in the low-mass range [118].

To enhance the sensitivity of the analysis, candidate diphoton
events are separated into mutually exclusive categories of differ-
ent expected signal-to-background ratios, based on the properties
of the reconstructed photons and on the presence of two jets sat-
isfying criteria aimed at selecting events in which a Higgs boson
is produced through the VBF process. The analysis uses multivari-
ate techniques for the selection and classification of the events. As
an independent cross-check, an analysis is also performed that is
almost identical to the one described in Ref. [24], using simpler
criteria based on the properties of the reconstructed photons to
select and classify events. The multivariate analysis achieves 15%
higher sensitivity than the cross-check analysis.

The reconstructed primary vertex that most probably corre-
sponds to the interaction vertex of the diphoton candidate is iden-
tified using the kinematic properties of the tracks associated with
that vertex and their correlation with the diphoton kinematics. In
addition, if either of the photons converts and the tracks from
the conversion are reconstructed and identified, the direction of
the converted photon contributes to the identification of the hard-
scattering vertex. More details can be found in Ref. [24].

The event selection requires two photon candidates satisfy-
ing pT requirements and “loose” photon identification criteria.
These photons must be reconstructed within the fiducial region,
|η| < 2.5, excluding the barrel–endcap transition region, 1.44 <
|η| < 1.57. A pT threshold of mγ γ /3 (mγ γ /4) is applied to the
photon leading (subleading) in pT, where mγ γ is the diphoton
invariant mass. Scaling the pT thresholds in this way avoids dis-
tortion of the shape of the mγ γ distribution. In the case of events
passing the dijet selection, the requirement on the leading photon

?
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searched for was kept blinded during the analysis optimisation,
until satisfactory agreement was found between the observed and
predicted numbers of events in control samples dominated by the
principal backgrounds.

This Letter is organised as follows. The ATLAS detector is briefly
described in Section 2. The simulation samples and the signal
predictions are presented in Section 3. The analyses of the H →
Z Z (∗) → 4!, H → γ γ and H → W W (∗) → eνµν channels are de-
scribed in Sections 4–6, respectively. The statistical procedure used
to analyse the results is summarised in Section 7. The systematic
uncertainties which are correlated between datasets and search
channels are described in Section 8. The results of the combina-
tion of all channels are reported in Section 9, while Section 10
provides the conclusions.

2. The ATLAS detector

The ATLAS detector [19–21] is a multipurpose particle physics
apparatus with forward-backward symmetric cylindrical geometry.
The inner tracking detector (ID) consists of a silicon pixel detec-
tor, a silicon microstrip detector (SCT), and a straw-tube transition
radiation tracker (TRT). The ID is surrounded by a thin supercon-
ducting solenoid which provides a 2 T magnetic field, and by high-
granularity liquid-argon (LAr) sampling electromagnetic calorime-
try. The electromagnetic calorimeter is divided into a central bar-
rel (pseudorapidity2 |η| < 1.475) and end-cap regions on either
end of the detector (1.375 < |η| < 2.5 for the outer wheel and
2.5 < |η| < 3.2 for the inner wheel). In the region matched to the
ID (|η| < 2.5), it is radially segmented into three layers. The first
layer has a fine segmentation in η to facilitate e/γ separation from
π0 and to improve the resolution of the shower position and di-
rection measurements. In the region |η| < 1.8, the electromagnetic
calorimeter is preceded by a presampler detector to correct for
upstream energy losses. An iron-scintillator/tile calorimeter gives
hadronic coverage in the central rapidity range (|η| < 1.7), while
a LAr hadronic end-cap calorimeter provides coverage over 1.5 <
|η| < 3.2. The forward regions (3.2 < |η| < 4.9) are instrumented
with LAr calorimeters for both electromagnetic and hadronic mea-
surements. The muon spectrometer (MS) surrounds the calorime-
ters and consists of three large air-core superconducting magnets
providing a toroidal field, each with eight coils, a system of pre-
cision tracking chambers, and fast detectors for triggering. The
combination of all these systems provides charged particle mea-
surements together with efficient and precise lepton and photon
measurements in the pseudorapidity range |η| < 2.5. Jets and Emiss

T
are reconstructed using energy deposits over the full coverage of
the calorimeters, |η| < 4.9.

3. Signal and background simulation samples

The SM Higgs boson production processes considered in this
analysis are the dominant gluon fusion (gg → H , denoted ggF),
vector-boson fusion (qq′ → qq′H , denoted VBF) and Higgs-strah-
lung (qq′ → W H, Z H , denoted W H/Z H). The small contribution
from the associated production with a tt̄ pair (qq̄/gg → tt̄ H , de-
noted tt̄ H) is taken into account only in the H → γ γ analysis.

For the ggF process, the signal cross section is computed at up
to next-to-next-to-leading order (NNLO) in QCD [22–28]. Next-to-

2 ATLAS uses a right-handed coordinate system with its origin at the nominal
interaction point (IP) in the centre of the detector, and the z-axis along the beam
line. The x-axis points from the IP to the centre of the LHC ring, and the y-axis
points upwards. Cylindrical coordinates (r,φ) are used in the transverse plane, φ

being the azimuthal angle around the beam line. Observables labelled “transverse”
are projected into the x–y plane. The pseudorapidity is defined in terms of the polar
angle θ as η = − ln tan(θ/2).

Table 1
Event generators used to model the signal and background processes. “PYTHIA”
indicates that PYTHIA6 and PYTHIA8 are used for simulations of

√
s = 7 TeV and√

s = 8 TeV data, respectively.

Process Generator

ggF, VBF POWHEG [57,58] + PYTHIA
W H , Z H , tt̄ H PYTHIA

W + jets, Z/γ ∗ + jets ALPGEN [59] + HERWIG
tt̄, tW , tb MC@NLO [60] + HERWIG
tqb AcerMC [61] + PYTHIA
qq̄ → W W MC@NLO + HERWIG
gg → W W gg2WW [62] + HERWIG
qq̄ → Z Z POWHEG [63] + PYTHIA
gg → Z Z gg2ZZ [64] + HERWIG
W Z MadGraph + PYTHIA, HERWIG
W γ + jets ALPGEN + HERWIG
W γ ∗ [65] MadGraph + PYTHIA
qq̄/gg → γ γ SHERPA

leading order (NLO) electroweak (EW) corrections are applied [29,
30], as well as QCD soft-gluon re-summations at up to next-to-
next-to-leading logarithm (NNLL) [31]. These calculations, which
are described in Refs. [32–35], assume factorisation between QCD
and EW corrections. The transverse momentum, pT, spectrum
of the Higgs boson in the ggF process follows the HqT calcu-
lation [36], which includes QCD corrections at NLO and QCD
soft-gluon re-summations up to NNLL; the effects of finite quark
masses are also taken into account [37].

For the VBF process, full QCD and EW corrections up to NLO
[38–41] and approximate NNLO QCD corrections [42] are used
to calculate the cross section. Cross sections of the associated
W H/Z H processes (V H) are calculated including QCD corrections
up to NNLO [43–45] and EW corrections up to NLO [46]. The cross
sections for the tt̄ H process are estimated up to NLO QCD [47–51].

The total cross sections for SM Higgs boson production at the
LHC with mH = 125 GeV are predicted to be 17.5 pb for

√
s =

7 TeV and 22.3 pb for
√

s = 8 TeV [52,53].
The branching ratios of the SM Higgs boson as a function of

mH , as well as their uncertainties, are calculated using the HDE-
CAY [54] and PROPHECY4F [55,56] programs and are taken from
Refs. [52,53]. The interference in the H → Z Z (∗) → 4! final states
with identical leptons is taken into account [55,56,53].

The event generators used to model signal and background pro-
cesses in samples of Monte Carlo (MC) simulated events are listed
in Table 1. The normalisations of the generated samples are ob-
tained from the state of the art calculations described above. Sev-
eral different programs are used to generate the hard-scattering
processes. To generate parton showers and their hadronisation, and
to simulate the underlying event [66–68], PYTHIA6 [69] (for 7 TeV
samples and 8 TeV samples produced with MadGraph [70,71] or
AcerMC) or PYTHIA8 [72] (for other 8 TeV samples) are used. Al-
ternatively, HERWIG [73] or SHERPA [74] are used to generate and
hadronise parton showers, with the HERWIG underlying event sim-
ulation performed using JIMMY [75]. When PYTHIA6 or HERWIG
are used, TAUOLA [76] and PHOTOS [77] are employed to describe
tau lepton decays and additional photon radiation from charged
leptons, respectively.

The following parton distribution function (PDF) sets are used:
CT10 [78] for the POWHEG, MC@NLO, gg2WW and gg2ZZ samples;
CTEQ6L1 [79] for the PYTHIA8, ALPGEN, AcerMC, MadGraph, HER-
WIG and SHERPA samples; and MRSTMCal [80] for the PYTHIA6
samples.

Acceptances and efficiencies are obtained mostly from full sim-
ulations of the ATLAS detector [81] using Geant4 [82]. These sim-
ulations include a realistic modelling of the pile-up conditions
observed in the data. Corrections obtained from measurements in

Snapshots from:  Physics Letters B 716 (2012) 1–29  (ATLAS)

         Physics Letters B 716 (2012) 30–61 (CMS)
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candidates. The calibration is refined by applying η-dependent cor-
rection factors, which are of the order of ±1%, determined from
measured Z → e+e− events. The leading (sub-leading) photon can-
didate is required to have ET > 40 GeV (30 GeV).

Photon candidates are required to pass identification criteria
based on shower shapes in the electromagnetic calorimeter and
on energy leakage into the hadronic calorimeter [97]. For the 7 TeV
data, this information is combined in a neural network, tuned to
achieve a similar jet rejection as the cut-based selection described
in Ref. [95], but with higher photon efficiency. For the 8 TeV data,
cut-based criteria are used to ensure reliable photon performance
for recently-recorded data. This cut-based selection has been tuned
to be robust against pile-up by relaxing requirements on shower
shape criteria more susceptible to pile-up, and tightening others.
The photon identification efficiencies, averaged over η, range from
85% to above 95% for the ET range under consideration.

To further suppress the jet background, an isolation require-
ment is applied. The isolation transverse energy is defined as the
sum of the transverse energy of positive-energy topological clus-
ters, as described in Section 4, within a cone of size "R = 0.4
around the photon candidate, excluding the region within 0.125 ×
0.175 in "η×"φ around the photon barycentre. The distributions
of the isolation transverse energy in data and simulation have been
found to be in good agreement using electrons from Z → e+e−

events and photons from Z → $+$−γ events. Remaining small dif-
ferences are taken into account as a systematic uncertainty. Photon
candidates are required to have an isolation transverse energy of
less than 4 GeV.

5.2. Invariant mass reconstruction

The invariant mass of the two photons is evaluated using the
photon energies measured in the calorimeter, the azimuthal angle
φ between the photons as determined from the positions of the
photons in the calorimeter, and the values of η calculated from
the position of the identified primary vertex and the impact points
of the photons in the calorimeter.

The primary vertex of the hard interaction is identified by com-
bining the following information in a global likelihood: the direc-
tions of flight of the photons as determined using the longitudi-
nal segmentation of the electromagnetic calorimeter (calorimeter
pointing), the parameters of the beam spot, and the

∑
p2

T of the
tracks associated with each reconstructed vertex. In addition, for
the 7 TeV data analysis, the reconstructed conversion vertex is
used in the likelihood for converted photons with tracks contain-
ing hits in the silicon layers of the ID. The calorimeter pointing
is sufficient to ensure that the contribution of the opening angle
between the photons to the mass resolution is negligible. Using
the calorimeter pointing alone, the resolution of the vertex z coor-
dinate is ∼ 15 mm, improving to ∼ 6 mm for events with two
reconstructed converted photons. The tracking information from
the ID improves the identification of the vertex of the hard inter-
action, which is needed for the jet selection in the 2-jet category.

With the selection described in Section 5.1, in the diphoton in-
variant mass range between 100 GeV and 160 GeV, 23 788 and
35 251 diphoton candidates are observed in the 7 TeV and 8 TeV
data samples, respectively.

Data-driven techniques [98] are used to estimate the numbers
of γ γ , γ j and j j events in the selected sample. The contribution
from the Drell–Yan background is determined from a sample of
Z → e+e− decays in data where either one or both electrons pass
the photon selection. The measured composition of the selected
sample is approximately 74%, 22%, 3% and 1% for the γ γ , γ j,
j j and Drell–Yan processes, respectively, demonstrating the dom-
inance of the irreducible diphoton production. This decomposition

is not directly used in the signal search; however, it is used to
study the parameterisation of the background modelling.

5.3. Event categorisation

To increase the sensitivity to a Higgs boson signal, the events
are separated into ten mutually exclusive categories having differ-
ent mass resolutions and signal-to-background ratios. An exclusive
category of events containing two jets improves the sensitivity to
VBF. The other nine categories are defined by the presence or not
of converted photons, η of the selected photons, and pTt, the com-
ponent3 of the diphoton pT that is orthogonal to the axis defined
by the difference between the two photon momenta [99,100].

Jets are reconstructed [101] using the anti-kt algorithm [102]
with radius parameter R = 0.4. At least two jets with |η| < 4.5
and pT > 25 GeV are required in the 2-jet selection. In the analy-
sis of the 8 TeV data, the pT threshold is raised to 30 GeV for jets
with 2.5 < |η| < 4.5. For jets in the ID acceptance (|η| < 2.5), the
fraction of the sum of the pT of tracks, associated with the jet and
matched to the selected primary vertex, with respect to the sum
of the pT of tracks associated with the jet (jet vertex fraction, JVF)
is required to be at least 0.75. This requirement on the JVF reduces
the number of jets from proton–proton interactions not associated
with the primary vertex. Motivated by the VBF topology, three ad-
ditional cuts are applied in the 2-jet selection: the difference of
the pseudorapidity between the leading and sub-leading jets (tag
jets) is required to be larger than 2.8, the invariant mass of the tag
jets has to be larger than 400 GeV, and the azimuthal angle differ-
ence between the diphoton system and the system of the tag jets
has to be larger than 2.6. About 70% of the signal events in the
2-jet category come from the VBF process.

The other nine categories are defined as follows: events with
two unconverted photons are separated into unconverted central
(|η| < 0.75 for both candidates) and unconverted rest (all other
events), events with at least one converted photon are separated
into converted central (|η| < 0.75 for both candidates), converted
transition (at least one photon with 1.3 < |η| < 1.75) and con-
verted rest (all other events). Except for the converted transition
category, each category is further divided by a cut at pTt = 60 GeV
into two categories, low pTt and high pTt. MC studies show that
signal events, particularly those produced via VBF or associated
production (W H/Z H and tt̄ H), have on average larger pTt than
background events. The number of data events in each category, as
well as the sum of all the categories, which is denoted inclusive,
are given in Table 4.

5.4. Signal modelling

The description of the Higgs boson signal is obtained from
MC, as described in Section 3. The cross sections multiplied by
the branching ratio into two photons are given in Table 4 for
mH = 126.5 GeV. The number of signal events produced via the
ggF process is rescaled to take into account the expected destruc-
tive interference between the gg → γ γ continuum background
and ggF [103], leading to a reduction of the production rate by
2–5% depending on mH and the event category. For both the 7 TeV
and 8 TeV MC samples, the fractions of ggF, VBF, W H , Z H and
tt̄ H production are approximately 88%, 7%, 3%, 2% and 0.5%, re-
spectively, for mH = 126.5 GeV.

In the simulation, the shower shape distributions are shifted
slightly to improve the agreement with the data [97], and the

3 pTt = |(pγ1
T + pγ2

T ) × (pγ1
T − pγ2

T )|/|pγ1
T − pγ2

T |, where pγ1
T and pγ2

T are the trans-
verse momenta of the two photons.
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๏  Exploring the Higgs sector at the LHC demands an accurate control over hadronic events

➡ Precise prediction for Higgs production and decay modes, as well as for background processes

  How to study the Higgs boson at the LHC

e.g. total prodn cross section and branching ratios:

Feynman diagrams from 2207.00092



A key property is confinement: quarks & gluons not observed as 
free particles. They bind (Appendix) into colour-singlet hadrons:  
mesons: equal no. of quarks & anti-quarks (usually 1 pair),  
baryons: odd number of quarks (usually 3)  
(+ a sea of gluons and additional  pairs) qq̄

๏  General principles: SU(3)colour gauge invariance, Poincaré invariance (also causality, unitarity)
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  LHC events are shaped by strong interactions (QCD)

Confinement


Quarks (fermions): Fundamental 
 representation of SU(3)colour 

(3 colour configurations)

3 (quark), 3̄ (anti-quark)

Gluons (bosons): Adjoint representation of 
SU(3)colour: 

(8 colour configurations)


3 ⊕ 3̄ = 8 ⊕ 1

6 types (3 families):  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Figure 2: Illustration of a qqg vertex in QCD, before summing/averaging over colours: a gluon
in a state represented by �1 interacts with quarks in the states  qR and  qG.

hermitean and traceless Gell-Mann matrices of SU(3),

QCD lecture 1 (p. 5)
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These generators are just the SU(3) analogs of the Pauli matrices in SU(2). By convention, the
constant of proportionality is normally taken to be

t
a
ij =

1

2
�

a
ij . (6)

This choice in turn determines the normalisation of the coupling gs, via equation (4), and
fixes the values of the SU(3) Casimirs and structure constants, to which we return below.

An example of the colour flow for a quark-gluon interaction in colour space is given in
figure 2. Normally, of course, we sum over all the colour indices, so this example merely gives
a pictorial representation of what one particular (non-zero) term in the colour sum looks like.

1.3 Colour Factors

Typically, we do not measure colour in the final state — instead we average over all possible
incoming colours and sum over all possible outgoing ones, wherefore QCD scattering ampli-
tudes (squared) in practice always contain sums over quark fields contracted with Gell-Mann
matrices. These contractions in turn produce traces which yield the colour factors that are as-
sociated to each QCD process, and which basically count the number of “paths through colour
space” that the process at hand can take6.

6The convention choice represented by equation (6) introduces a “spurious” factor of 2 for each power of the
coupling ↵s. Although one could in principle absorb that factor into a redefinition of the coupling, effectively
redefining the normalisation of “unit colour charge”, the standard definition of ↵s is now so entrenched that
alternative choices would be counter-productive, at least in the context of a pedagogical review.
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  The QCD Lagrangian

(Dμ)ab = δab∂μ + igs tc
abAc,μ Fc

μν = ∂μAc
ν − ∂νAc

μ − gs f abcAb
μ Ac

ν

such that, due to the gauge fixing condition n · A = 0, the matrix is again independent

of the gauge field and therefore can be absorbed into the normalisation, such that no

ghost fields propagate.

So finally we have derived the full QCD Lagrangian

LQCD = LYM + Lq + LGF + LFP . (1.22)

We will not derive the QCD Feynman rules from the action, but just state them

below. (The pictures are partly taken from Z. Trocsanyi, arXiv:1608.02381).

Propagators: (i" prescription understood)

gluon propagator: �ab
µ⌫(p) = �ab �µ⌫(p)

a, µ b, ⌫
p

quark propagator: �ij
q (p) = �ij i /p+m

p2�m2

i j
p

ghost propagator: �ab (p) = �ab i
p2

a b
p

Vertices:

quark-gluon: �µ, a
gqq̄ = �i gs (ta)ij�µ

j i

a , µ

three-gluon: �abc
↵��(p, q, r) = �i gs (F a)bc V↵��(p, q, r)

b, � c, �

a, ↵

q

p

r

V↵��(p, q, r) = (p � q)�g↵� + (q � r)↵g�� + (r � p)�g↵� , p↵ + q↵ + r↵ = 0

four-gluon: �abcd
↵��� = �i g2

s

2

4
+fxac fxbd (g↵�g�� � g↵�g��)

+fxad fxcb (g↵�g�� � g↵�g��)

+fxab fxdc (g↵�g�� � g↵�g��)

3

5

a, ↵

c, �

b, �

d, �

ghost-gluon: �µ, a
g⌘⌘̄ = �i gs (F a)bc pµ

a, µ

bc

The four-gluon vertex di↵ers from the rest of the Feynman rules in the sense that it

is not in a factorised form of a colour factor and a kinematic part carrying the Lorentz

indices. This is an inconvenient feature because it prevents the separate summation over
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Feynman rules adapted from  
Introduction to QCD and loop calculations G.Heinrich (TUM)

Non abelian gauge theory


Unobserved, CP violating term,  strong experimental 
bounds on  (neutron electric dipole moment)θ
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  The QCD Lagrangian
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δabΔμν
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γμpμ + m
p2 − m2

Feynman rules adapted from  
Introduction to QCD and loop calculations G.Heinrich (TUM)

Non abelian gauge theory


Unobserved, CP violating term,  strong experimental 
bounds on  (neutron electric dipole moment)θ

The emission of a gluon of colour  from a parton 
  is associated with a colour charge operator  

 
;   


     

 
Representation of SU(3) generators in terms of  

the Gell-Mann matrices (cf. Appendix) 

c
i ∈ {q, g} Ti

(Ti)c
ab

≡ ifacb, i = g (Ti)c
ab

≡ tc
ab, i = q

Tr(tatb) = TR⏟
=1/2

δab, ∑
c,b

tcabt
c
bd = CF⏟

=4/3

δad, ∑
b,c

fabcfdbc = CA⏟
=3

δad

Basic colour algebra we’ll use later


f abc
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๏  Any observable (e.g. Green functions, S matrix from LSZ) can be obtained from the functional integral 


➡ Contains full information about the theory, but extremely hard  
 to solve exactly. An exception is given by lattice methods, although 
 describing a scattering process is unfeasible at present  
 (Minkowskian problem, enormous lattice size required)


➡ In practice we resort to perturbative methods, i.e. solve integral for the free theory (simple!) and  
 then account for interacting Lagrangian as perturbations around the free-theory solution

  QCD for high-energy scattering

NB: including gauge fixing and  
Faddeev-Popov Lagrangians necessary  

to keep formulation well defined


⟨0 |TG[A, ψ, ψ̄] |0⟩ = 𝒩∫ 𝒟A𝒟ψ𝒟ψ̄ei ∫ d4xℒ(x)G[A, ψ, ψ̄]

Functional of the QCD fields (e.g. )G = FμνFμνψ̄ ψ

Time ordering

Vacuum
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W
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W
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W
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10�3

10�2

10�1

1

101

102

103

104

105

106

1011

�
[p

b] Theory

LHC pp
p
s = 13.6 TeV

Data 29.0 � 31.4 fb�1

LHC pp
p
s = 13 TeV

Data 3.2 � 140 fb�1

LHC pp
p
s = 8 TeV

Data 20.2 � 20.3 fb�1

LHC pp
p
s = 7 TeV

Data 4.5 � 4.9 fb�1

LHC pp
p
s = 5 TeV

Data 0.03 � 0.3 fb�1

Standard Model Production Cross Section Measurements
Status: June 2024

ATLAS Preliminary
p
s = 5,7,8,13,13.6 TeV

Remarkable agreement with 
experimental data for broad 
range of reactions (multiple 

orders of magnitude in cross 
section units)!

  Great success of perturbation theory at the LHC
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  A realistic LHC event: e.g. dilepton (Drell-Yan) production

Each event is the result of multiple pp 
collisions per bunch crossing (pile up), 
and each pp collision involves several 

simultaneous scatterings (MPI)

Complexity of hadronic scattering
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  A simplified structure of a LHC event

Hard scattering 

(~102 - 103 GeV)


Hadronisation 
(~ 1 GeV)
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  A simplified structure of a LHC event

Hard scattering 

(~102 - 103 GeV)


Hadronisation 
(~ 1 GeV)

Observation
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Credits: Keenan Crane

A “spherical-cow” approximation (which 
however captures most of the physics!)
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  A simplified structure of a LHC event

๏  Hard scattering (2 hardest partons): large momentum  
 transfer, where new physics may be hiding


๏  Multi-scale evol.n: copious emission of (mainly) strongly  
 interacting particles. System evolves towards lower energies

➡ Connects observation/measurement to hard event 
 

๏  QCD phase transition (non-perturbative): partons are  
 combined into the colour-singlet hadrons eventually 
 observed in the detector

Hard scattering 

(~102 - 103 GeV)


Hadronisation 
(~ 1 GeV)

Observation


En
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gy
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eProtonProton
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Credits: Keenan Crane

A “spherical-cow” approximation (which 
however captures most of the physics!)
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๏  Key observation 1: separation (factorisation) of dynamics taking place at different time scales‡


➡ The “hard” scattering happens on shorter time scales ( ) than the  
 interactions within the proton or among the final-state hadrons ( )

τ ∼ 10−2 GeV−1

τ ∼ 1 GeV−1
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  Asymptotic freedom ⊕ factorisation ⇾ perturbative QCD

Dynamics at long 
time scales

Dynamics at short 
time scales

dσpp→X = ∑
ij

∫
1

0
dx1 dx2 fi(x1, μF) fj(x2, μF)

× d ̂σij→X(x1x2s, μR, μF) + 𝒪 ( Λp

mp
X )

‡ Actually proven to all order only for very simple quantities, e.g. Drell-Yan total cross section
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๏  Key observation 2: strong interactions become weakly coupled at high energies (asymptotic freedom)


➡ Allows for a perturbative approximation of the primary scattering as a power 
 series in  (truncated when the desired precision is reached)αs
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  Asymptotic freedom ⊕ factorisation ⇾ perturbative QCD

dσpp→X = ∑
ij

∫
1

0
dx1 dx2 fi(x1, μF) fj(x2, μF)

× d ̂σij→X(x1x2s, μR, μF) + 𝒪 ( Λp

mp
X )

∑
n

αn+nB
s (μR) d ̂σ(n)

ij→X
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๏  Key observation 2: strong interactions become weakly coupled at high energies (asymptotic freedom)


➡ Allows for a perturbative approximation of the primary scattering as a power 
 series in  (truncated when the desired precision is reached)αs

  Asymptotic freedom ⊕ factorisation ⇾ perturbative QCD

dσpp→X = ∑
ij

∫
1

0
dx1 dx2 fi(x1, μF) fj(x2, μF)

× d ̂σij→X(x1x2s, μR, μF) + 𝒪 ( Λp

mp
X )

∑
n

αn+nB
s (μR) d ̂σ(n)

ij→X

The properties of asymptotic freedom and factorisation are intimately tied to the 
divergences structure of gauge theories in different kinematic limits (more later).

23
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  The perturbative-QCDer’s workflow
Feynman rules

Scattering amplitudes

d ̂σ2→n =
1
F ∫ ⟨ |𝒜 |2 ⟩dΦn𝒪(Φn)

Cross sections

Event rates

Nevents = ℒ × σ

dσ2→n = ∫ f1(x1)f2(x2)d ̂σdx1dx2
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๏  PDF  encodes the distribution of partons of flavour i and longitudinal momentum x within the proton 
probed at a scale . Composition of the proton evolves with the scale  (QCD improved parton model).


➡ Heuristic interpretation in factorisation theorem: resolve partons in the proton at resolution scale 

fi(x, μ)
μ μ

μF

  Ingredients of the master formula: parton distribution functions

dσpp→X = ∑
ij

∫
1

0
dx1 dx2 fi(x1, μF) fj(x2, μF) × d ̂σij→X(x1x2s, μR, μF) + 𝒪 




pi = x pproton
In collinear factorisation partons fly in exactly the same 

direction as the proton, and share its longitudinal 
momentum. Transverse d.o.f.s are neglected as part of 

 corrections (higher twist).Λp/mp
X



“Plus” distributions regularise the soft singularities due 
to the radiation of a gluon ( ). Notice the 

enhancement at , which drives the growth of the 
gluon PDF with the scale  in this regime.


Currently, the complete NNLO splitting functions ( ), 
and many of the N3LO terms ( ) are known.

z → 1
z → 0

μ

̂P(2)(z)
̂P(3)(z)
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๏  Key property: although PDFs are intrinsically non-perturbative objects, their evolution with the scale at 
which the proton is resolved is perturbative! The evolution is governed by the DGLAP equation

  DGLAP evolution equation

d
d ln μ2

fi(x, μ) =
αs(μ)

2π ∫
1

x

dz
z

̂Pij(z, αs(μ)) fj ( x
z

, μ) ≡
αs(μ)

2π
̂Pij(x, αs(μ)) ⊗ fj (x, μ)

Splitting functions
The scale evolution of a flavour 

interplays with that of other flavours 
via the anomalous dimension  ̂Pij

̂P(0)
qq (z) = CF ( 1 + z2

(1 − z)+
+

3
2

δ(1 − z)),

̂P(0)
gq (z) = TR(z2 + (1 − z)2),

̂P(0)
gg (z) = 2 CA ( z

(1 − z)+
+

1 − z
z

+ z(1 − z)) + δ(1 − z)b0

̂P(0)
qg (z) = CF

1 + (1 − z)2

z

b0 =
11CA − 4TRnf

6

̂Pij(z, αs(μ)) = ̂P(0)
ij (z) +

αs(μ)
2π

̂P(1)
ij (z) + 𝒪(α2

s )

fj(x/z, μ) fi(x, μ)

Pij(z)
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  DGLAP evolution equation

0.001 0.005 0.010 0.050 0.100 0.500 1

0.0
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x

x
f(
x)

up

0.001 0.005 0.010 0.050 0.100 0.500 1

0

5

10

15

20

25

30

x
x
f(
x)

gluon

DGLAP evolution towards larger scales depletes the 
distributions at larger x to fuel the growth of the 

distributions at smaller x. 
 

Gluon PDF becomes substantial. Its growth is driven 
by  and  splittings (enhancement of 

corresponding splitting functions)
q → qg g → gg

=1.4 GeVμ

=1.4 GeVμ=125 GeVμ

=125 GeVμ

Figures made with ManeParse public code (see also Apfel)

PDF4LHC15

PDF4LHC15

Mathematica code available at this URL

https://ncteq.hepforge.org/mma/index.html
https://apfel.mi.infn.it/home
https://gitlab.cern.ch/pimonni/summer-school-public-material
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  Composition of the proton
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s

g

d u

s
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DGLAP evolution determines the composition of the 
proton at perturbative scales given a fit of the parton 

densities at small (~non-perturbative) scales. 
 

The growth of the gluon PDFs has a substantial impact 
on LHC phenomenology (e.g. Higgs, , jets,…).


Heavier flavours (e.g. c, b) are produced dynamically via 
gluon splitting. Ongoing debate as to whether there is an 
“intrinsic” component in the proton (e.g. intrinsic charm)

tt̄

Momentum sum rule:

∫
1

0
dx x ∑

i∈q,q̄

fi(x, μ) + fg(x, μ) = 1
Gluons carry roughly 50% of the 
proton’s momentum at μ = mh

Figures made with ManeParse public code (see also Apfel)

PDF4LHC15

PDF4LHC15

https://ncteq.hepforge.org/mma/index.html
https://apfel.mi.infn.it/home
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๏  Many determinations for LHC. Modern global fits reach few-%  
 precision for , although estimate of PDF uncertainties 
 is currently an open problem (fit/theory uncertainties)


➡ State of the art sets are extracted with NNLO (DGLAP and  
 QCD predictions for ), and a lot of data. First steps towards  
 N3LO sets are being taken

x ∈ [10−3,0.1]

̂σ

  Current status of global PDF determinations

Figure 2.1. The kinematic coverage of the NNPDF4.0 dataset in the (x, Q
2) plane.

10

Figure 5.6. Comparison between the NNPDF4.0, CT18 and the MSHT20 NNLO PDF sets. The up, antiup,
down, antidown, strange, antistrange, charm and gluon PDFs are shown at Q = 100 GeV, normalized to the central
NNPDF4.0 value. For NNPDF4.0, solid and dashed bands correspond respectively to 68% c. l. and one-sigma
uncertainties.

53

Figure 5.6. Comparison between the NNPDF4.0, CT18 and the MSHT20 NNLO PDF sets. The up, antiup,
down, antidown, strange, antistrange, charm and gluon PDFs are shown at Q = 100 GeV, normalized to the central
NNPDF4.0 value. For NNPDF4.0, solid and dashed bands correspond respectively to 68% c. l. and one-sigma
uncertainties.

53

e.g. Comparison of PDFs (g & u) between different fitting methodologies  
(neural networks, hessian, …) and parametric settings ( , …)mc, αs

Figures from The path to proton structures at 1% accuracy 2109.02653
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๏  Encodes the actual perturbative part of the high-energy partonic scattering 

  Ingredients of the master formula: the partonic cross section

dσpp→X = × d ̂σij→X(x1x2s, μR, μF)∑
ij

∫
1

0
dx1 dx2 fi(x1, μF) fj(x2, μF) + 𝒪 ( Λp

mp
X )

∑
n

αn+nB
s (μR) d ̂σ(n)

ij→X

d ̂σij→X(x1x2s, μR, μF) = αnB
s (μR)(d ̂σ(0)

ij→X + αs(μR) d ̂σ(1)
ij→X + α2

s (μR) d ̂σ(2)
ij→X + α3

s (μR) d ̂σ(3)
ij→X + …)

LO (Born) cross section,  for QCD 
mediated processes (e.g. , , jets)

nB > 0
gg → h tt̄

NLO  
(TH error ~ 20%)

NNLO  
(TH error ~ 5-10%)

N3LO  
(TH error ~ few %)

The dependence on the unphysical scales ( ) will always 
be of higher orders w.r.t. the perturbative accuracy reached 
(gives a handle to estimate the size of missing corrections)

μR, μF

LO  
(TH error ~ 50%)
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  Computing the partonic cross section

d ̂σ(n)
ij→X =

1
F ∑

m
∫ dΦm ⟨ |𝒜2→m |2 ⟩ 𝒪(Φm)

Flux factor

m body phase space (for all m contributing to a given perturbative order)

Squared amplitude (averaged over initial-state 
spin & colour)

Observable’s measurement

Computation of scattering amplitudes at 
higher loops: entails VERY large expressions 

(algebraic complexity) & spaces of special functions 
(analytic complexity)

Computation of phase space 
integrals entails delicate cancellations of 

singularities (subtractions) between real and virtual 
corrections. Significant computational challenge 

for state of the art calculations

! = ϵμ1
1 ⋯ϵμn

n v̄(q) Γμ1,...,μn
u(p)~

FROM AMPLITUDES TO INTEGRALS

Scattering Amplitudes

! = ϵμ1
1 ⋯ϵμn

n v̄(q) Γμ1,...,μn u(p)~

FROM AMPLITUDES TO INTEGRALS

Scattering Amplitudes
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  The squared amplitude (e.g. NLO for  partonic process)2 → 2
2

2ℜ⎨ ⎬
2

∼ 𝒪(g4
s ) ∼ 𝒪(α2

s )

∼ 𝒪(α3
s )

LO‡   
(only tree-level diagrams)

NLO‡   
1) Add a virtual loop to the LO process 

and expand the squared norm


2) Add a real emission to  
the LO process

+

|𝒜(0) + αs𝒜(1) |2 = |𝒜(0) |2 + αs 2ℜ𝒜(0)(𝒜(1))† + …

Which type of diagrams enter a NNLO 
calculation for this reaction?

‡ We use representative diagrams, the actual number of Feynman diagrams explodes with the perturbative order
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  Ingredients of the master formula: the strong coupling constant
๏  The size of  determines how many perturbative orders are needed to reach the desired precision


➡ As for PDFs, the coupling “runs” with the energy scale (renormalisation group equation)

αs

dαs(μ)
d ln μ2

= β(αs(μ)) = − β0 α2
s (μ) + 𝒪(α3

s ) , β0 = (11CA − 4TRnf)/(12π) > 0

αs(μ) =
αs(μ0)

1 + αs(μ0)β0 ln μ2

μ2
0

=
1

β0 ln μ2

Λ2

42 9. Quantum Chromodynamics

Table 9.1: Unweighted and weighted pre-averages of –s(m2

Z) for each sub-
field in columns two and three. The bottom line corresponds to the com-
bined result (without lattice gauge theory) using the ‰

2 averaging method.
The same ‰

2 averaging is used for column four combining all unweighted
averages except for the sub-field of column one. See text for more details.

averages per sub-field unweighted weighted unweighted without subfield
· decays & low Q

2 0.1173 ± 0.0017 0.1174 ± 0.0009 0.1177 ± 0.0013
QQ̄ bound states 0.1181 ± 0.0037 0.1177 ± 0.0011 0.1175 ± 0.0011
PDF fits 0.1161 ± 0.0022 0.1168 ± 0.0014 0.1179 ± 0.0011
e

+
e

≠ jets & shapes 0.1189 ± 0.0037 0.1187 ± 0.0017 0.1174 ± 0.0011
hadron colliders 0.1168 ± 0.0027 0.1169 ± 0.0014 0.1177 ± 0.0011
electroweak 0.1203 ± 0.0028 0.1203 ± 0.0016 0.1171 ± 0.0011
PDG 2023 (without lattice) 0.1175 ± 0.0010 0.1178 ± 0.0005 n/a

αs(mZ
2) = 0.1180 ± 0.0009

August 2023

α s
(Q

2 )

Q [GeV]

τ decay (N3LO)
low Q2 cont. (N3LO)

Heavy Quarkonia (NNLO)
HERA jets (NNLO)

e+e- jets/shapes (NNLO+NLLA)
e+e- Z0 pole fit (N3LO)

pp/p-p jets (NLO)
pp top (NNLO)

pp TEEC (NNLO)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1  10  100  1000

Figure 9.5: Summary of determinations of –s as a function of the energy scale Q compared to
the running of the coupling computed at five loops taking as an input the current PDG average,
–s(m2

Z) = 0.1180 ± 0.0009. Compared to the previous edition, numerous points have been updated
or added.

In this combination, as in past combinations, we have considered lattice QCD calculations
of –s independently of experimental/phenomenological determinations. In the future, when the
lattice continuum extrapolations are under better control, it may be useful to group lattice QCD
determinations of –s with experimental determinations of –s that have systematics of similar origin,
in a similar manner as we currently group, for example, hadron collider results together [723].

22nd December, 2023

Coupling becomes small at large scales (asymptotic 
freedom) and has a logarithmic divergence at small 

scales (breakdown of pQCD due to confinement) 
parametrised by theory IR cutoff Λ

‡  currently known to 5 loops!β(αs)

‡ 

Figure from QCD chapter of Particle Data Book 2312.14015
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  Precise determinations of the strong coupling constant
๏  As for PDFs, we can predict the evolution between scales but not the  
 absolute value of the coupling, which must be extracted from data


➡ Several extractions from different experiments/observables/methods


➡ Ongoing debate about uncertainties in many fits (e.g. hadronization corrns)


➡ First-principle computation possible 
 with lattice QCD (many observables), 
 uncert. reliably at and below % level


➡ Optimistic perspective to reach higher  
 accuracy (few permille) from future lattice 
 extractions and future colliders (e.g. FCC-ee) 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Figure 9.2: Summary of determinations of –s(m2

Z) with uncertainty in the seven sub-fields as
discussed in the text. The yellow (light shaded) bands and dotted lines indicate the pre-average
values of each sub-field. The dashed line and blue (dark shaded) band represent the final world
average value of –s(m2

Z). The “*” symbol within the “hadron colliders” sub-field indicates a deter-
mination including a simultaneous fit of PDFs.

22nd December, 2023
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0.115 0.120
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Ayala 20

TUMQCD 19

Cali 20

HPQCD 10 (Wl)
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HPQCD 14A

HPQCD 10 (2p)

Figure 9.4: Lattice determinations that enter the FLAG 2021 average. The yellow (light shaded)
band and dotted line indicate the unweighted average value for this sub-field. The dashed line and
blue (dark shaded) band represent our final world average value of –s(m2

Z).

22nd December, 2023

Figures from QCD chapter of Particle Data Book 2312.14015

αs(mZ) = 0.1180 ± 0.0009 (0.76%)

2023 World Average:
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๏  Encode physics at hadronic scale due to either hadronization or dynamics within the protons (e.g. intrinsic  
 transverse momentum, multiple parton scatterings). No general first-principle approach to control them  
 at present (analytic methods in simple cases, otherwise Monte Carlo models) 
 
 
 

➡ Value of parameter p is observable dependent & it is crucial for precision physics programme

  Ingredients of the master formula: power corrections

dσpp→X = × d ̂σij→X(x1x2s, μR, μF)∑
ij

∫
1

0
dx1 dx2 fi(x1, μF) fj(x2, μF) + 𝒪 ( Λp

mp
X )

Λ
mX

∼ 𝒪(1%) , ( Λ
mX )

2

∼ 𝒪(0.1%)

e.g. if mX~100 GeV a very rough estimate suggests

Some examples: p=2 for the Drell-Yan (Higgs) total  
cross section and related inclusive qT distribution 🙂;  

p=1 for most jet observables 😐
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  Let’s put all this into practice:

The Higgs total cross section (ggF)
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๏  After averaging over colour & spin states, the partonic XS reads 


๏  Total cross section is simply given by 

̂σ0 = Agg δ(1 − z)

  The leading order (LO) cross section (effectively a one loop calculation)

f(τq) = arcsin2 ( 1/τq) if τq ≥ 1

f(τq) = −
1
4

ln
1 + 1 − τq

1 − 1 − τq

− iπ

2

if τq < 1
τq = 4m2

q /m2
h

Agg =
αs(μR)2

π
1

256v2 ∑
q∈loop

τq(1 + (1 − τq) f(τq))

2

, z =
m2

h

̂s

σ0 = ∫
1

0
dx1dx2 fg(x2, μF)fg(x1, μF) m2

h Agg δ( ̂s − m2
h) = m2

h Agg ℒgg ( m2
h

s ) ℒij(τ) = ∫
1

τ

dx
x

fi(x, μF) fj ( τ
x

, μF)
Parton (gluon) 

luminositŷs = x1x2s

QCD vertex

Yukawa vertex
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  The LO cross section vs. experiment
๏  However, comparison to data reveals a large discrepancy. Possible explanations:


➡ It may be a sign of new physics!


➡ Is the theory prediction sufficiently accurate & reliable? What is the theory uncertainty of our calculation?  

Central obstacle in modern collider 
physics: getting theoretical calculations to 

be sufficiently accurate & reliable  
(e.g. in our case it involves quantum 

corrections to  & other production 
modes).


Let’s consider next-to-leading-order (NLO) 
corrections next …

gg → h

Predictions here obtained with the ggHiggs public code

◆

◆

Theory (LO) @ s =13 TeV

ATLAS @ s =13 TeV: from h->γγ and h->4l (2207.08615)◆

0
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pp
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h
cr
os
s
se
ct
io
n
[p
b]

https://www.roma1.infn.it/~bonvini/higgs/
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  Appendix



๏  The (traceless and Hermitian) Gell-Mann matrices span the SU(3) Lie algebra , with 


๏  The non-zero structure constants can be obtained from the commutation relation

[ta, tb] = if abctc ta
ij =

λa
ij

2

40

  The generators of the SU(3) (colour) algebra

λ1 = (
0 1 0
1 0 0
0 0 0) λ2 = (

0 −i 0
i 0 0
0 0 0) λ3 = (

1 0 0
0 −1 0
0 0 0) λ4 = (

0 0 1
0 0 0
1 0 0)

λ5 = (
0 0 −i
0 0 0
i 0 0 ) λ6 = (

0 0 0
0 0 1
0 1 0) λ7 = (

0 0 0
0 0 −i
0 i 0 ) λ8 =

1

3 (
1 0 0
0 1 0
0 0 −2)

f123 = 1 f147 = − f156 = f246 = f257 = f345 = − f367 =
1
2 f 458 = f 678 =

3
2



๏  Computation of the QCD potential can be carried out with Lattice techniques (Wilson loop)

41

  The static quark-antiquark potential

Some phenomenological models 
for non-perturbative QCD (e.g. 
used in event generators) are 

based on this paradigm 

even a pure Coulomb potential, σ = 0, implies a non-vanishing σeff at finite t ! r.
Of course, the symmetry of the Wilson loop under interchange of r and t also implies
that no plateau in V (r, t) can be found, unless t " r. For smeared Wilson loops, one
would still expect a similar 1/t2 approach (with a different coefficient) of σeff towards
the asymptotic limit, while effective masses, V (r, t), will approach V (r) exponentially
fast at any r.

4.7.2 The quenched potential
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[V
(r)

-V
(r 0

)] 
r 0

r/r0

β = 6.0
β = 6.2
β = 6.4
Cornell

Figure 4.2: The quenched Wilson action SU(3) potential, normalised to V (r0) = 0.

In Figure 4.2, we display the quenched potential, obtained at three different β values
in units of r0 ≈ 0.5 fm from the data of Refs. [173, 29]. The lattice spacings, determined
from r0, correspond to a ≈ 0.094 fm, 0.069 fm and 0.051 fm, respectively. The curve
represents the Cornell parametrisation with e = 0.295. At small distances the data
points lie somewhat above the curve, indicating a weakening of the effective coupling
and, therefore, asymptotic freedom. We will discuss this observation later. All data
points for r > 4a collapse onto a universal curve, indicating that for β ≥ 6.0 the scaling
region is effectively reached for the static potential. Moreover, continuum rotational
symmetry is restored: in addition to on-axis separations, many off-axis distances of the
sources have been realised and the corresponding data points are well parameterised by
the Cornell fit for r > 0.6 r0. Prior to comparison between the potential at various β,
the additive self-energy contribution, associated with the static sources, that diverges
in the continuum limit has been removed. This is achieved by the parametrisation-
independent normalisation of the data to V (r0) = 0.
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Cornell model : V(r) =
a
r

+ b r + c

Figure from G. Bali 0001312

linear attractive behaviour at long 
distances indicates confinement


