National Synchrotron Light Source II

Magnetic Measurement Activities by the ID Group at the National Synchrotron Light Source-II

IMMW23

Toshi Tanabe (NSLS-II Insertion Devices Group Leader)

6-11 October, 2024

NSLS-II:ID Group Staff

- Sr. Physicist (Group Leader)
 - Toshi Tanabe Ph.D.
- Sr. Physicist (Deputy)
 Dean Hidas Ph.D.
 (Spectral calc., Controls)

Lead Mechanical Engineer

James Rank (Ring WCC, LOTO, Maintenance)

National Synchrotron Light Source II

Electrical Engineer Brian Eipper

- Mechanical Engineer
 Thomas Brookbank
- Electro-mechanical Technician

Dan Migliorino

 Electro-mechanical Technician

Bryan Holland

<u>Outline</u>

- National Synchrotron Light Source-II (NSLS-II) Current Status
 - Storage Ring Status & Beamlines
 - Installed Insertion Devices and Other Magnetic Devices
- Magnetic Measurement Facility
 - Flip Coil bench upgrade
 - Pulsed wire bench upgrade
- HEX-Superconducting Wiggler
 - Device, Operation and Maintenance Issues
 - Measurement system
- o SC-Adaptive Gap Undulator
 - Concept & Development Plan
 - Magnetic Measurement Plan
- Other Development for Future Upgrade
 - Complex Bend Lattice for Upgrade
 - New Flip Coil, Rotating Coil and In-Vacuum Pulsed Wire bench

o **Summary** National Synchrotron Light Source II

NSLS-II Current Status

Storage Ring Status & Beamlines

Installed Insertion Devices and Other Magnetic Devices

National Synchrotron Light Source II

NSLS-II Storage Ring & Beamlines

https://www.bnl.gov/nsls2/

NSLS-II Ring Parameters (as of Aug. 24)

		Bare Lattice	3DW Lattice	All-ID w.o SCW	All-ID with SCW
	Energy (GeV)	3			
	Circumference (m)	791.958			
	Emittance e, (pm-rad)	2086	957	747	657
	Energy Spread s _d (%)	0.0514	0.0818	0.0799	0.093
	Energy Loss per Turn U ₂ (keV)	286.4	649.1	831.8	958
	Length of Long Straight (m)	9.3			
	Length of Short Straight (m)	6.6			
	b _x , b _y at Long Straight Center (m)	20.1, 3.4			
	b _x , b _y at Short Straight Center (m)	1.8, 1.1			
	Betatron Tunes n_x , n_y	33.2, 16.26			
	Natural Chromaticisty x_x , x_y	-98.5, -40.2	-98.4, -39.8	-98.4, -39.9	-98.2, -40.1
	Momentaum Compaction a	0.000363			
	Radiation Damping Time t_v, t_v, t_s (ms)	55, 55, 28	24, 24, 12	19, 19, 9.5	16.6, 16.6, 8.3
ici X	RF Frequency (MHz)	499.681			
	Number of RF Buckets	1320			
	Number of Bunches	1056			
	Time between Bunches (ns)	2			
	Total Beam Current (mA)	400 (500)			
	Average bunch current (mA)	0.47			
	Average bunch charge (nC)	1.25			
D	Synchrotron Tune @ V _{RF} = 3 MV	0.00871	0.00862	0.00856	0.0085
	RMS Bunch Length @ VRF = 3 MV	. –			
-	(mm)	2.7	4.34	4.27	5.02

NSLS-II Insertion Devices Current Installation

LS: Long Straight

- 2 x 3.0m-In Vacuum Undulators (IVU20)
- 1 x 3.0m-IVU22 (LS)
- 3 x 1.5m-IVU21s (two for canted configuration)
- 2 x 2.8m-IVU23s (canted : LS)
- 1 x 2.8m-IVU23 (LS)
- 1 x 1.0m-IVU18 (canted)
- 7 x 1.13T-3PW

- 6 x 3.4m-Damping Wigglers W100s (LS)
- 2 x 2.0m-Elliptically Polarizing Undulators (EPU49)
- 1 x 2.8m-Quasi-period EPU105 and 1 x 1.4m-EPU57 (in-line configuration)
- 1 x 3.5m-EPU57 (LS)
- 1x1.6m-U42 and 1x 1.0m-EPU60 (canted)
- 1 x 3.5m-U68 (LS)
- 1 x 1.2m-Superconducting Wiggler (SCW70)

15 Different types of Insertion Devices to maintain.

ID Magnetic Measurement Facility (ID-MMF)

Current Measurement Systems

Upgrade of Flip Coil Bench

Upgrade of Pulsed Wire Bench

National Synchrotron Light Source II

Hall Probe Bench

3D Hall probe-mapping bench MMB-6500 built by Kugler, GmbH

Total Z-axis travel is 6.5 m.

A Heidenhain linear encoder provides position feedback for Z-axis closed loop control.

A Renishaw laser linear encoder is used as a trigger for the on-the-fly measurements.

- Granite guide-beam length: 7.7 m
- Flatness deviation $< \pm 7 \,\mu m$
- Positioning accuracy is ± 1 μm.
- 9 Motion Controlled Axes.

- 4 Primary Axes
 Z master axis and Z' follower axis
 Y axis and X axis
 - 5 Secondary Axes
- · A rotary axis
- V linear axis
- W linear axis
- B goniometer axis and the C

A and C secondary axes are particularly useful for fine angular positioning of the By Hall sensor

Senis 3D Hall Probe

NI CompactRIO

Current Flip Coil Bench

Achieve 1st Integral Repeatability: ~ 2 G.cm for 4 m long ID

Delta Tau GeoBrick PMAC-2

Keithley DMM 2701

Motion Controller

- Eight servomotors
- master-slave configuration
- Closed loop mode
- Limit/home switches

Linear X, Y and Z stages:

Encoder resolution: 0.1 µm Absolute accuracy: ±1 µm Pitch and yaw angles: ± 50 µrad

Rotary stage:

Full 360° capacity Encoder resolution: 0.005 deg Angular accuracy: ≤ 40 arc sec Angular repeatability: ≤ 2 arc sec

Digital Multimeter

- 6½-digit (22-bit) resolution
- Serial communication RS-232
- Integration time 16.67 ms (1 PLCs)
- Repeating average digital filter

ADC Linear Stages and Yasukawa rotary drive

New Flip Coil Bench

Newport XPS-D Controller

New Pulsed Wire Bench

Old bench at NSLS

New bench

National Synchrotron Light Source II

Old Pulsed Wire Bench at the NSLS

New Pulsed Wire Bench

N'gotta, P., Ebbeni, M., Thiel, A., & Tarawneh, H. (2019, June 1). *First Results of a Pulse Wire Measurement System for ID Characterization at MAX IV*.

HEX Superconducting Wiggler

In-Vacuum Flip Coil Measurement for Integrated Multipoles & SCW Specs In-Vacuum Hall probe bench

HEX-SCW Mag. Meas. by In-Vacuum Flip Coil

Using COTS in-vacuum XY stages (Kurt J. Lester, XY31-31065-001) and rotary feed-throughs (UHV Design, MD40-31065-001)

ltem		Parameter		
Magnet Array length		≤1200 mm		
Period Length		70.0 mm		
Operating field (By) on axis		4.3T		
Number of pole pairs @ full field		29		
Number of pole pairs @ 34 field		2		
Number of pole pairs @ 1/4 field		2		
Electron beam chamber full verti	ical aperture	10mm		
Electron beam chamber full horiz	zontal aperture	76mm		
Field stability ΔBy / By over two	weeks	< 10-4		
Max. Stray field on axis at each	end of the cryostat	10 G		
Ramping time, 0 to 4.3 T up or d	lown	≤ 30 minutes		
Liquid Helium consumption per of	quench	<10 liter		
Maximum temperature of magne	t coil during quench	< 75 K		
$\int_{-\infty}^{\infty} By(x, y, z)dz$	Requirement for the Absolute Value of	≤50 G.cm		
$\int_{-\infty}^{\infty} Bx(x, y, z) dz$	1 st and 2 nd Field Integral Error (x <10mm, y=0mm),	≤30 G.cm		
$\int_{-\infty}^{\infty}\int_{-\infty}^{z}By(x, y, z')dz'dz$	(from 0 to 4.3T) (with correction coils)	≤10,000 G.cm.cm		
$\int_{-\infty}^{\infty}\int_{-\infty}^{z}Bx(x,y,z')dz'dz$		≤5,000 G.cm.cm		
Requirement for the Absolute Value of On-axis Electron Trajectory for E=3GeV at any longitudinal position		x <60 µm, y <5 µm and y' <10 µrad		
Requirement for the Absolute V	alue of Integrated Multipole (x <10 mm, y	Definition of Multipole Expansion about $(x = x_0, y = 0)^*$		
= 0 mm), (from 0 to 4.3T)		$\int_{-\infty}^{\infty} dz (B_y + iB_x) \equiv \sum_{n=0}^{\infty} (b_n (x_0) + ia_n (x_0))(x - x_0 + iy)^n$		
Normal quadrupole (b1(x0))		50 G		
Skew quadrupole (a1(x0))		50 G		
Normal sextupole (b2(x0))		50 G/cm		
Skew sextupole (a2(x0))		50 G/cm		

*The reference points (x₀, 0) shall be chosen less than 5.0 mm apart, for example; x₀=-6.0mm, -3.0 mm, 0 mm, 3.0mm, 6.0 mm

HEX-SCW Mag. Meas. by In-Vacuum Hall Probe Bench

T. Tanabe, *et. al.*,"Development of the high energy engineering X-ray (HEX) superconducting wiggler, magnetic measurement, installation, and commissioning", Review of Scientific Instruments 94, (2023): https://doi.org/10.1063/5.0146964

New Flip Coil Bench

Newport based design with continuous rotation

National Synchrotron Light Source II

New Flip Coil Bench

SC Adaptive Gap Undulator

Concept & Magnetic Design

Measurement Plan

National Synchrotron Light Source II

Optional Footer line - Presenter - Talk title - Conference Name

<u>Segmented Adaptive Gap Undulator (SAGU)</u>

SC-SAGU vacuum chamber 20 analysis

Sea#3=Sea#2 Correction Coils Configuration

Seg#3=Seg#2 J1=J2=J3

Icc1 = {jc11, jc21, jc31, jc41} Icc2 = {jc12, jc22, jc32, jc42} Icc3 = {jc13, jc23, jc33, jc43}

Magnetic field and e-trajectory with CC=0

Segment #1: Bpeak= 1.68247 T K= 2.2 Segment #2: Bpeak= -1.41604 T K= 2.05 Segment #3 :Bpeak= -1.41604 T K= 2.05

Number of wires in the half-layer junction S1: 3 Number of wires in the half-layer junction S2: 3

Number of layers in the termination coil S2_T1: 8 Number of layers in the termination coil S2_T2: 3

Output angle: -0.133267 µrad Field Integral: -0.0133267 G.m

Segment 1	Segment 2&3
14.0	15.5
30	26
38.4	38.4
~1700	~1700
2.2	2.95
8.0	8.0
~1940	~1675
2.2	2.05
	Segment 1 14.0 30 38.4 ~1700 2.2 8.0 ~1940 2.2

SC-AGU : Magnetic Measurement Option

- ✓ <u>Plan A:</u> Use vertical measurement system with Liquid Helium
 - New small Hall probe (Senis ???) is planned to be used.
- ✓ <u>Plan B:</u> Develop conduction cooled measurement bench using In-Vacuum Magnetic Measurement System (IVMMS).

NSLS-II Upgrade R&D

Complex Bends Lattice

Small Aperture Rotating Coil Bench

Gradient Permanent Magnet Quadrupole

National Synchrotron Light Source II

NSLS-IIU Complex Bend Lattice

History of Complex Bend development

T. Shaftan et al., Complex Bend II, BNL-211223-2019-TECH, Oct 2018T. Shaftan, Methodology for designing Complex Bend lattice, BNL-223858-2023-TECH, Jan 2022

National Synchrotron Light Source II

Decoupled Dipole-Quadrupole magnets (B=0.25-0.5 T, G=±250T/m)

G. Wang et al., PRAB 22,(2019)

Combined Function Dipole-Quadrupole PMQs (B=0.25-0.5T, G=±130T/m)

Halbach type S. Brooks et al., PRAB,(2020) Hybrid type 24 *P. N'Gotta et al., PRAB,(2016)*

Rotating Coil Bench

Small Permanent Magnet

Quadrupole for complex bend

National Synchrotron Light Source II

12 mm diameter rotating coil with 1.8 mm thick printed circuit board, wiring, and ceramic bearings.

Halbach Magnet Development- Prototypes, Test

CB concept successfully tested at NSLS-II linac diagnostic beamline 100-200 MeV electron beam energy

National Synchrotrc

S. Sharma et al.

2

3 4

s (m)

0

In-house magnet prototype

- 1 defocusing magnet assembly successful
- 1 focusing assembly foreseen

Vacuumscmelze magnet prototype

9 defocusing magnets assembly procured6 focusing magnets assembly procured

In-house PMQ prototype measurement

	Normali	zed	Absolute		
	bn	an		bn	an
1	-12828.2	-0.6673	1	-4.94E-02	-2.57E-06
2	-10000	0	2	-3.85E-02	1.24E-17
3	-181.326	29.79	3	-6.99E-04	1.15E-04
4	-27.7127	4.2156	4	-1.07E-04	1.62E-05
5	-3.5331	0.777	5	-1.36E-05	2.99E-06
6	3.2568	-1.5846	6	1.25E-05	-6.10E-06
7	-3.1613	-0.7419	7	-1.22E-05	-2.86E-06
8	-0.7607	-0.3551	8	-2.93E-06	-1.37E-06
9	0.172	0.0874	9	6.63E-07	3.37E-07
10	-0.2507	0.0437	10	-9.66E-07	1.68E-07
11	-0.0523	0.0169	11	-2.01E-07	6.50E-08
12	-0.01	0.0081	12	-3.86E-08	3.13E-08
13	0.0109	0.0026	13	4.18E-08	1.00E-08
14	0.0061	0.0012	14	2.34E-08	4.72E-09
15	0.0011	0.0001	15	4.23E-09	4.62E-10
	RSS= 1	86 units	B=-0.4	94 T	

- G=-128.33 T/m
- High sextupole component (b3)
- Assembly error (800 um error for vgap)
- Modification of the aperture spacer

26

Summary

- The NSLS-II ring currently has 29 beamlines and running with 660 pm.rad emittance. Plan to construct 8-12 new beamlines over the next decade.
- Magnetic measurement systems for SCWs (with less than 2 m) have been developed.
- SC-AGU prototype is under construction. The minimum gap at the center is 3 mm.
- A new flip coil bench with continuous rotation capability has been developed.
- The measurement system for a 4.4 m long CPMU is planned.
- Research and developments for complex bend lattices for future NSLS-II ring upgrade are in progress.