

.S. DEPARTMENT OF

IERGY

Magnetic Measurement activities at Magnet Division, Brookhaven National Laboratory

Vikas Teotia

Superconducting Magnet Division Brookhaven National Laboratory

Contributions:

Piyush Joshi, Andy Marone, Michael Anerella

Magnetic measurement facilities at Magnet Division, **Brookhaven National Laboratory**

Some snaps

Mole RA-7

More examples of existing measuring coils

Warm DX Mole in AGS Corrector Magnet

Mole RA-3

Coil 96 2 54 cm

Coil 203 9-Windings 30 cm

Recent Magnetic Measurement Activities

- 1. Low Field RCS test magnet for EIC
- 2. DX magnet (Dipole Magnet of RHIC)
- 3. APS Sextupole Magnet (refurbished for EIC)
- 4. Q1ABpF (Double helical Quadrupole on Direct Wind Technology) for EIC
- 5. MX Quadrupole for Hi-Lumi
- 6. Rotating Coil Calibration

RCS Test Magnet

- Energy range: 0.4-18GeV
 Factor 45
- Dipoles:
 - 18 GeV: 0.25T
 - 0.4 GeV: 0.4/18*0.25T = 5mT
- Quads are similar (pole tip field)
 - ~8mT
 - Sextupoles?
- This is a very low field
- Field quality: '10 units is ok'
- Issues:
 - BH curve
 - Hysteresis
 - Stray fields

Magnet designed and developed by EIC (Holger et. al.)

Rotating Coil and Hall probe arrangement

Measurement plan

Magnetic Measurements with internal drive R_{ref}=50 mm; Coil Length=110 mm

Time axis (seconds)

After Cycling: Transfer Function

Deviation from Linearity

Repeatability measurements with Rotating Coil : Harmonics (@ 1A, 1.65 mT)

Standard deviation as function of N for different pole index

Repeatability measurements with Rotating Coil : Absolute magnetic field

Harmonics

Dodecapole

Octupole

Magnetic Measurements with internal drive R_{ref}=31 mm; Coil Length=914 mm

Transfer Function (Up-ramp and down ramp)

Deviation from Linearity

Standard deviation of deviation of linearity

Quadrupole repeatability measurements

Sextupole repeatability measurements

Standard deviation harmonics

Refurbished APS Sextupole Magnets for EIC

- 1. These magnets are more than 20 years old
- 2. Magnetic Measurements with internal drive R_{ref}=31 mm; Coil Length=914 mm
- 3. 2 Magnets are measured to check efficacy of these magnets for using in EIC
- 4. Results closely matched to previous measurements

Magnet provided by Christoph Montag, and Mahler George J

Transfer Function of Measured Sextupole

Sextupole #1 Sextupole #2 0.035 0.035 0.030 0.030 (U/U) 0.025 0.020 0.015 (U/U) 0.025 0.020 0.015 0.010 0.010 0.005 0.005 0.000 0.000 20 40 60 80 100 120 0 20 40 60 80 100 120 140 160 180 0 140 160 180 Current (A) Current (A)

Harmonics of the measured Sextupole

Sextupole #1 Sextupole #2 6 6 а а b 4 4 b 2 -2 -0 0 Strength (Units) Strength (Units) -2 -2 -4 -4 -6 -6 -8 -8 -10 -10 -12 --12 -14 -14 10 12 13 4 5 6 7 8 9 11 14 15 10 11 12 13 14 15 5 4 6 7 8 9 Pole Index (n) Pole Index (n)

Q1ABpF Direct Wind Quadrupole Magnet

Introduction to BNL Direct Wind Magnet Technology

We place superconductor (round wire or cable) on a support tube under computer control.

- General purpose, e.g. no need for costly tooling.
- Very good field quality (correct during production).
- Compact coils (force management without collars).
- Easily nest coils (e.g. b_1 , a_1 , b_2 , a_2 , b_3 , a_3 , b_4 ...).
- Vary aperture along length (wind on tapered tubes).
- Vary field along length (SuperKEKB, EIC, FCC-ee).
- Technology appropriate for doing "one off magnets."
- Experience so far: Direct Wind magnets do not train.
- Used for decades in accelerators around the world.

ATRO Accelerator Science & Technology Department Brett Parker, John Escalier et. al.

BNL's unique, world class magnet technology.

Magnetic Measurement Set-up

2 meter long, 31 mm Ref Radius

BNL "9-Tangential" Coil Design

ational Laboratory

- 12 deg., 36 Turns "Main" coil.
- 16 turns in each of the six bucking windings.
- 18 grooves needed.
- Minimum groove separation is 12 deg. (quite comfortable).
- Coil parameters are manually optimized to ensure applicability to all magnet types. (12 free parameters)
- Very simple end design (No overlapping turns, except DB).
- Only 7 windings are essential.
- Dipole windings were added to help with calibration but are also useful in providing more flexibility in measurements.

HoM using different tangential windings

Measured Harmonics of individual Coil-set and overall

National Laboratory

MQX Quadrupoles for Hi-Lumi: Field measurement system

MQX Quadrupoles for Hi-Lumi: Transfer Function

*rot coil changed during the test. The new coil reads ~0.2% higher. MQXFA06, change would be ~19 units when the coil change is considered.

Anis Ben Yahia/ Febin Kurian

Field Quality in the straight section

	Warm Pre-test	Cold 16 kA	Warm After test
		SS avg	
	SS avg (unit)	(unit)	SS avg (unit)
b3	-0.96	-1.63	-1.33
b4	-0.06	-0.38	-0.03
b5	-0.19	-0.02	-0.13
b6	1.77	3.16	2.84
b7	-0.33	-0.46	-0.34
b8	0.01	0.05	0.02
b9	-0.03	-0.01	-0.02
b10	0.62	0.62	0.61
	Warm Pre-test	Cold 16 kA	Warm After test
	Warm Pre-test	Cold 16 kA SS avg	Warm After test
	Warm Pre-test SS avg (unit)	Cold 16 kA SS avg (unit)	Warm After test SS avg (unit)
a3	Warm Pre-test SS avg (unit) 2.12	Cold 16 kA SS avg (unit) 2.51	Warm After test SS avg (unit) 2.58
a3 a4	Warm Pre-test SS avg (unit) 2.12 1.54	Cold 16 kA SS avg (unit) 2.51 1.25	Warm After test SS avg (unit) 2.58 1.15
a3 a4 a5	Warm Pre-test SS avg (unit) 2.12 1.54 0.67	Cold 16 kA SS avg (unit) 2.51 1.25 0.51	Warm After test SS avg (unit) 2.58 1.15 0.62
a3 a4 a5 a6	Warm Pre-test SS avg (unit) 2.12 1.54 0.67 -0.15	Cold 16 kA SS avg (unit) 2.51 1.25 0.51 -0.13	Warm After test SS avg (unit) 2.58 1.15 0.62 -0.15
a3 a4 a5 a6 a7	Warm Pre-test SS avg (unit) 2.12 1.54 0.67 -0.15 -0.01	Cold 16 kA SS avg (unit) 2.51 1.25 0.51 -0.13 0.04	Warm After test SS avg (unit) 2.58 1.15 0.62 -0.15 -0.01
a3 a4 a5 a6 a7 a8	Warm Pre-test SS avg (unit) 2.12 1.54 0.67 -0.15 -0.01 -0.47	Cold 16 kA SS avg (unit) 2.51 1.25 0.51 -0.13 0.04 -0.51	Warm After test SS avg (unit) 2.58 1.15 0.62 -0.15 -0.01 -0.43
a3 a4 a5 a6 a7 a8 a9	Warm Pre-test SS avg (unit) 2.12 1.54 0.67 -0.15 -0.01 -0.47 0.12	Cold 16 kA SS avg (unit) 2.51 1.25 0.51 -0.13 0.04 -0.51 0.12	Warm After test SS avg (unit) 2.58 1.15 0.62 -0.15 -0.01 -0.43 0.10

Anis Ben Yahia/ Febin Kurian

Rotating Coil Calibration Facility

Quadrupole Magnet

Summary

- 1. Magnetic Measurement systems built over years are serving the purpose of accelerator magnet measurements
- 2. Rotating coils with different coil length and ref. radius are available
- 3. The rotary mechanism and software are planned to be upgraded
- 4. Electrical motors in Moles being replaced with Piezo Motors for making them compatible for high fields
- 5. Z-harmonic scanner is under development
- 6. PCB based rotating coils are being designed to meet requirements of EIC.

Thanks for your kind attention

(Thanks to Bill, Chris, Leo and Pat at Magnet Division)

