

Measurement Reports and Lab Upgrades at HZB

E. Rial on Behalf of HZB Undulator Group IMMW23 – Bad Zurzach, Switzerland– 10.10.2024

Acknowledgements

Members of the Undulator Group past and present

Atoosa Meseck Oliver Reichel Jürgen Bakos Stefan Gottschlich Johannes Bahrdt Carsten Kuhn Kiarash Karimi Mario Strehlke Guilherme Carraro Carella Winfried Frentrup Stefan Grimmer Nasim Fallahi Florian Laube Sebastian Knaack Christoph Rethfeldt

Overview

UE51

Background, shimming and installation.

Upgrade Plans

Pulsed wire, In-vacuum Hall Bench, Helmholtz Coil.

Upcoming Projects UE56-3, IVUE32, Cryo-APPLE. Facilities

Parameter	BESSY II	MLS
Ring Circ.	240m	48m
Energy	1.7 GeV	105 – 630 MeV
Straights	16	4
Undulators	APPLE II: 8 Hybrid Ex-Vac: 4 CPMU: 1	Hybrid Ex- Vac: 1

UE51 Details

Parameter	Value
ID Type	APPLE II
Moving Axes	4 (full polarisation control)
Period Length	51.3mm
Number of Periods	84
Minimum Gap	15.6mm
Peak Field	0.812 T(Vertical Field) 0.645 T(Helical Field) 0.552 T(Horizontal Field)
Minimum Energy	64 eV (Horizontal) 95 eV (Circular) 122 eV (Vertical)

Measurement Activities and Upgrades at HZB – IMMW23 – PSI Bad Zurzach, Switzerland – E. Rial – 10.10.2024

UE51 Magnet Characterisation

Systematic Errors

Errors arise systematically from the pressing and magnetisation of the magnets Systematic pairing of differently pressed magnets correct these errors well Improved sorting results

mark from

pressing

Var 1

Var 3

Measure

- Single scan trajectories saved to individual files
- Metadata and Data saved separately
- Organised by Folder
- Not possible to integrate undulator motion Analyse
- Standalone analysis programme used
- 126 line input text file
- Multiple data input files
 - Expert users only!
 - Prone to user error...

Predict

- Standalone shim programme
 - Virtual Shims, Iron-Shims, L-Shims, Magic Fingers
 - ASCII Data input (Metadata free)
 - ASCII Output (Metadata free)

Apply

• Post-processing required to make outputs technician-readable

Process is SLOW!

```
lambda in units of ar-axis, used during transation and shim
number of periods puted in transa and speck for ideal spe-
ments when MITL MR NOAR
                                                                                                                ing, using data from shin tile
                                    (1) - Additional
reduced data act
                                    opline fil
                                     Find making
                                          and of oplines (1) conto opline, (2) N-opli
                                                                                      I boundary conditions for oable opt-
                                                                                      TRINCATION ION FIT *
                                                max max, allowed dev. from pred. dist, betw. extrema (in )
                                                      Cross minimal allowed fraction of data point
                                     nparm, number of parameters to be fitted
(0) initial param. from next lines, (1) in. par
                                                                                                    1 Neptitedes
                              1.0, 0., 0., 0. 0. 1 a-valued
                           change phi by 2*pi if delta phi > a
                                                                                            ted period length and t of periods from file ""
                                       homes of harmonics to calculate
                                                             I harmonic #, range around harmonic, # of p
                                                                barmonic t, range around barmonic, t o
                                                           I barmonic #, range around barmonic, # of points
                                       -- limite for error seconder
                                 145 peaks (1) max. degr. (10 %) (11) max red db175 (10 %)
20d peaks (1) max. degr. (10 %) (11) max red db175 (10 %)
                                 1 Sed peaks (1) mas, deep, (10 %) (11) max red shift (10 %)

1 setpet format; (1) minary, (2) METT (25cd), (3) ASETT (5110)
2 i calgat formati (1) bitany, 00 APET (5)
i calgat formati (1) bitany, 00 APET (5)
i calgat formati (1) bitany, 00 APET (5)
i calgat (1) bitany, 10 APET (5)
i calgat (1) bitany, 11 article excited
0.00 i i solte fil canve, 11 article excited
0.00 i i solte fil canve, 11 article excited
0.00 APET (5)
i calgat (1) bitany, 11 article excited
0.00 APET (5)
i calgat (1) bitany, 11 article excited
0.00 APET (5)
i calgat (1) bitany, 11 article excited
0.00 APET (5)
i calgat (1) bitany, 11 article excited
0.00 APET (5)
i calgat (1) bitany, 11 article excited
0.00 APET (5)
i calgat (1) bitany, 11 article excited
0.00 APET (5)
i calgat (1) bitany, 11 article excited
0.00 APET (5)
i calgat (1) bitany, 11 article excited
0.00 APET (5)
i calgat (1) bitany, 11 article excited
0.00 APET (5)
i calgat (1) bitany, 11 article excited
0.00 APET (5)
i calgat (1) bitany, 11 article excited
0.00 APET (5)
i calgat (1) bitany, 11 article excited
0.00 APET (5)
i calgat (1) bitany, 11 article excited
0.00 APET (5)
i calgat (1) bitany, 11 article excited
0.00 APET (5)
i calgat (1) bitany, 11 article excited
0.00 APET (5)
i calgat (1) bitany, 11 article excited
0.00 APET (5)
i calgat (1) bitany, 11 article excited
0.00 APET (5)
i calgat (1) bitany, 11 article excited
0.00 APET (5)
i calgat (1) bitany, 11 article excited
0.00 APET (5)
i calgat (1) bitany, 11 article excited
0.00 APET (5)
i calgat (1) bitany, 11 article excited
0.00 APET (5)
i calgat (1) bitany, 11 article excited
0.00 APET (5)
i calgat (1) bitany, 12 article excited
0.00 APET (5)
i calgat (1) bitany, 12 article excited
0.00 APET (5)
i calgat (1) bitany, 12 article excited
0.00 APET (5)
i calgat (1) bitany, 12 article excited
0.00 APET (5)
i calgat (1) bitany, 12 article excited
0.00 APET (5)
i calgat (1) bitany, 12 article excited
0.00 APET (5)
i calgat (1) bitany, 12 article excited
0.00 APET (5)
i calgat (1) bitany, 12 article excited
0.00 APET (5)
i calgat (1) bitany, 12 article excited
0.00 APET (5)
i calgat (1) bitany, 12 article excited
0.00 APET (5)
i calgat (1) 
    0,0,0,0 1 write phase into
```


	HZB: Magnetic Measurement Analysis			-	
•	Select Data Folder For Analysis				
	Select Processed Data File				_
	Enter Component Name]		
	Enter Ident Name]		
	Enter State of Component]		
	Enter Measurement Step (integer)]		
(Choose the Measurement Equipment Used	Granit Messbank ~			
1		Analyse Measurement			
	Waiting for Processing				

ſ	Name	Class	Dims	Туре	Data
	✓ UE51	Group			
	✓ Full_Undulator	Group			
	Step_25	Group			
	✓ Step_34	Group			
	❤ G15	Group			
	measurement	Group			
	Step_37	Group			
	Step_38	Group			
	Step_41	Group			
l	> Sten 42	Groun			

> Analysed Data

- > Measurement Bench Settings
- > Metadata
- Raw Data

State

Summary Results

Measure

- Single scan trajectories saved to individual files
- Metadata and Data saved separately
- Organised by Folder
- Not possible to integrate undulator motion Analyse
- Simplified Analysis Process
- Incorporates Measurement (Meta)Data
- Analysis (Meta)Data combined
- HDF5 Format
 - Expert users only...

Predict

- Standalone shim programme
 - Virtual Shims, Iron-Shims, L-Shims, Magic Fingers
- ASCII Data input (Metadata free)
- ASCII Output (Metadata free)

Apply

 Post-processing required to make outputs technician-readable

Process is SLOW!

```
    the second 
                                                             A PERSON
A phase
                            CALIBORTION and ZEDMING
CALIBORTION and ZEDMING
I (0) LINEAR DESEMBLATION (1) Solido apline fit and evaluation
p0.,4000.,1.,0.,4000. I hostelary conditions for cable apline fit.
                                                                                                                                                        les 11 chills by det, as
                                                                  however of economic
                                                                                                   1 a-position, entit
                                                                                 - limite for error set
                                                                                                                                         *** DATA EXCLUTION
                                                4700., J a-position limits for reduced data and
                                                                                                Limite for error new
                                                                                                                                                   * ZELINE FIT
                                                                       Kind of opline: (1) cable opline, (2) N-opline
0.,1.,0. I boundary conditions for cable oplin
                                                        [d, f, for the second secon
                                                                       FIL Foll, 17 distances between estrema too small, 1
                                                                            191 automatic transation, 111 conti
                                                                                           TAG, BIDING TRACTION OF DAMAS FOR FIRST
                                                                       Atro Bin, Atro Bas, limits for astonatio 1
0. J limits for explicit transation
                                                                         --- limite for error seconder
                                           I device and, allowed dev. Frag period. disc. becks, matters [1: 9].
I fractions missional allowed matchins of default applies field matchines
are applied on the second second second second second second second
1 (9) Isling lamons. France local lineary (3) in. part. Frank Tichman
0., 0., 9., 8., 1 Application
STL46, 0., 9., 8., 0 I Applied
Strategies.
                                   Initidy U., W., G. W., J. 2004 Edited
(2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (20
                                                                  (3) seroth order 4-pi prolate window, (1) window from file
                                                                       maximum frequency (in harm 4) to record in reduced data fi
                                                                       applitude phase dea
                                                          -5,5.e-5 / region 1: fainnel, fasanci,
                                      6.8,2.0-5,5.0-5 I region 1: faineni, faaanni, anniave,anniaa
R.8,2.0-5,5.0-5 I region 1: faineni, faaanni, anniave,anniaa
yrriit

    B 1 in (0) Lakeds from Fig. (1) Lakeds from part file, its Lakeds
    0, 2000. -100000. 1 STL wir / ATL max ref. fon atm wir / ATL
    Thirds for error worksage.
    0.3 i Hillawn,drilawn, allowed fraction of the fundamental (in %)
    page atm set of the set
                                                        I gamma
I bookte, scaling factor to get units in Texta
I accule, scaling factor to get units in Meter
I accule, scaling factor to get units in Meter
I apida win and apida max relative to actor win and actor max in per
Thilts for error metadaget
                                                                                      This area fitted period length and # of periods from file ""
                                                                  1 00 trajectory not compensately 01 trajectory comp
                                                               I namer of harmonics to calculate
                              -0.3,0.3,750 | harmonic +, range around harmonic, + of point
                                   0.3.0.3.750 I harmonic #, range around harmonic, # of points
.-0.7,0.7,750 / harmonic +, range around harmonic, + of points
            0,0,0,0 I write phase information
```

Group

Group

Group

Group

Group

Group

Measure

- Single scan trajectories saved to individual files
- Metadata and Data saved separately
- Organised by Folder
- Not possible to integrate undulator motion

Analyse

- Simplified Analysis Process
- Incorporates Measurement (Meta)Data
- Analysis (Meta)Data combined
- HDF5 Format
 - Expert users only...

Predict

.

- Standalone shim programme
 - Virtual Shims, Iron-Shims, L-Shims, Magic Fingers
- ASCII Data input (Metadata free)
- ASCII Output (Metadata free)

Apply

Post-processing required to make outputs technician-readable

Process is SLOW!

Basham, M et al. (2015). J. Synchrotron Rad. 22, doi:10.1107/S1600577515002283 – dawnsci.org

-10 0 7 (mm) 10 20

-20

0.00 -0.05 -0.10 HZB :: BESSY II Synchrotron

Measure

- Single scan trajectories saved to individual files
- Metadata and Data saved separately
- Organised by Folder
- Not possible to integrate undulator motion

Analyse

- Simplified Analysis Process
- Incorporates Measurement (Meta)Data
- Analysis (Meta)Data combined
- HDF5 Format
 - Expert users only...

Predict

- Callable python functions
 - Virtual Shims, Magic Fingers
- HDF5 stores input and output

Apply

Post-processing required to make outputs technician-readable

Process is SLOWER!

Final Measurements

Property	Value
Minimum Gap	15.6mm
Peak Field	0.825 T (V), 0.542 (H)
Field Integral (and shift variation)	+/- 0.02 Tmm
Straightness	+/- 2 micron

First Light

Installed May 2024 First Light September 2024

19.09.2024 SH

First Light

Installed May 2024 First Light September 2024

Assessment of goals

Strategise

- Explore solution space
 - Software
 - Controls
 - Data Storage
 - Fail Fast Mentality

Execute

- Assess programme against milestones.
- Continue to provide measurements during development.
- Report progress at IMMW23

Plan

- Desired Outcomes
- Timescales
- Costs
- Staff

Resource

- Scientist/Engineer
- Motion Control Expert
- Structured Student Support

Pulsed Wire

Small Aperture In-Vacuum Devices

Investigations into wire properties Hardware ready

Control and measurement still to be developed.

In Vacuum Bench Hall Probe

HZB :: BESSY II Synchrotron

Goals 2024

- Improved position feedback
- Length Extension
- Improved Vacuum Compatibility

Helmholtz Coil Test Bench

Old System

- Obsolete Programming Language.
- OS/2 almost 24 years old.
- No technical support.
- Unfriendly outputs for analysis.

Helmholtz Coil Overview

Courtesy of G. Carraro Carella

Status Equipment 2019

Equipment	Hardware	Software
Hall Probe Measurement Bench	ANORAD Motion Control Agilent Voltmeter	PASCAL OS/2
Stretched Wire Bench	ANORAD Motion Control Agilent Voltmeter	PASCAL OS/2
Fixed Wire Bench	Berger Lahr (since 1996) Keithley Nanovoltmeter	PASCAL OS/2
Helmholtz Coils	SSB Antriebstechnik (<1996?) Agilent Voltmeter	PASCAL OS/2
In-Vacuum Hall Probe	Controls Techniques Digitax Agilent Voltmeter	Labview Windows
In-Vacuum Stretched Wire	Controls Techniques Digitax Agilent Voltmeter	Labview Windows

Obsolescence and Technical Debt

Status Equipment 2022

Equipment	Hardware	Software
Hall Probe Measurement Bench	Controls Techniques Digitax Agilent Voltmeter	Labview Windows
Stretched Wire Bench	Controls Techniques Digitax Agilent Voltmeter	Labview Windows
Fixed Wire Bench	Berger Lahr (since 1996) Keithley Nanovoltmeter	PASCAL OS/2
Helmholtz Coils	SSB Antriebstechnik (<1996?) Agilent Voltmeter	PASCAL OS/2
In-Vacuum Hall Probe	Controls Techniques Digitax Agilent Voltmeter	Labview Windows
In-Vacuum Stretched Wire	Controls Techniques Digitax Agilent Voltmeter	Labview Windows

Obsolescence and Technical Debt

Status Equipment 2024

Equipment	Hardware	Software
Hall Probe Measurement Bench	Controls Techniques Digitax Agilent Voltmeter	Labview Windows
Stretched Wire Bench	Controls Techniques Digitax Agilent Voltmeter	Labview Windows
Fixed Wire Bench	Berger Lahr (since 1996) Keithley Nanovoltmeter	PASCAL OS/2
Helmholtz Coils	Omron Power PMAC Agilent Voltmeter	EPICS/CSS Linux
In-Vacuum Hall Probe	Controls Techniques Digitax Agilent Voltmeter	Labview Windows
In-Vacuum Stretched Wire (+ Pulsed Wire Capability)	Controls Techniques Digitax Agilent Voltmeter	Labview Windows

Obsolescence and Technical Debt

Upcoming Projects

HZB :: BESSY II Synchrotron

UE56-3

Refurbish module of UE56-2

- Ex-Vacuum APPLE-II
- Repeat of SESAME work

Main Measurement Lab

- Continue Data Workflow
 Improvements
- Replace remaining obsolete equipment

IVUE32¹

In-Vacuum APPLE-II Device

- 6mm minimum gap
- Clean assembly and measurement processes

In-Vacuum Hall Bench

- Improved position feedback
- Length Extension
- Improved Vacuum Compatibility

Cryo-APPLE²

Cryogenic In-Vacuum APPLE Device

- 6 mm minimum gap
- ~1m length

In-Vacuum Stretched Wire

 Integration of Pulsed Wire Measurement System

Summary

Successes

UE51

- Built & Shimmed
- Installed & Integrated
 Helmholtz Coil Control System
- Updated
- Ready for further roll out Data analysis workflow
- Started...

Challenges

Measurement Facilities

- Clean measurement and assembly area
 Measurement Equipment
- Upgrade of Fixed Wire Bench
- Revival of Pulsed Wire measurement system.
- Extension of In-Vacuum Hall Bench Measurements
- Measurement of IVUE32 test structure.
- Initial measurements of IVUE32 components
 Data Analysis Workflow
- Be able to report 'Faster'

Postscript - Cybersecurity

June 2023 Cyberattack

All IT infrastructure offline. All official accounts disabled.

Does *anything* still work?

Postscript - Cybersecurity

June 2023 Cyberattack

All IT infrastructure offline. All official accounts disabled.

Recovery

BESSY II (storage ring) back within a couple of weeks Beamlines restored after 13 months Relatively rapid return to measurement possibilities due to Disk Images of measurement machines Software/Modelling relatively quick to recover due to 'non official' backups – personal GitHub repos/non HZB repos.

Ongoing difficulties

Re-arrangement of internal IT network infrastructures has eliminated useful tools such as remote desktop.

• Some tools slowly coming back – NX, GOAT (Access via browser) Data transfer is more difficult.

Official in-house repositories unavailable to external networks

Recommendations

Take cybersecurity seriously!

Wargame... what would happen in your group if all access to company systems was removed?

J. Viefhaus, Cybersecurity efforts undertaken at BESSY II– SRI2024 [JPCS]