Magnetic Measurement Framework for Fully Traceable Measurements

Matthias Bonora, Marco Buzio, Lucio Fiscarelli, Carlo Petrone, Stephan Russenschuck

Outline

- MM needs systems
- Measurement flow
- Flexible Framework for Magnetic
 Measurements
- Processing
- Analysis / Results

MM Value Shop

2024-10-10

Magnetic Measurement Systems

Rotating coil systems

Ring-Sample Permeameter

Helmholtz coils

Translating Fluxmeter

3D mapper

Magnetic Measurement Systems

Merge Measurements and Simulations

IMMW23

Magnetic Measurement Roles

- Different roles
 - Development
 - Script development
 - Operation

MM Software Requirements

- Different measurement benches and types
- Similar, yet different acquisition systems
- Different sensors and actuators
- Different actors of usage
- Measurement data storage and retrieval
- Postprocessing and analysis
- → Need for an efficient software platform as base of operations

A Flexible Framework for Magnetic Measurements

- Idea for a software framework
 for magnetic measurements
- Reusable
 - Easy to implement small independent blocks
 - Blocks are reusable when needed
- Flexible
 - Easy to write measurement applications
 - Still full control and extendibility

IMMW 15, International Magnetic Measurement Workshop, FERMILAB, Batavia, IL, 21–24 Aug 2007

A software framework, in computer programming, is an abstraction in which common code, providing generic functionality, can be selectively overridden or specialized by user code for providing specific functionalities.

A Flexible Framework for Magnetic Measurements

IMMW23

FFMM: Components

Kelliny2

HP3457a

HP349704

PT202

B-Field

MetrolphTeolometerTHM7025

#Script = Techdemo 2

grouping = Group Groups
grouping.description = Text "Used to group a list of Pa

grouping.check = Group "Checkable Groups" checkable
grouping.check.description = Text "Checkable groups hav

grouping.flat = FlatGroup "A flat group"
grouping.flat.name = Text Flatgroup
grouping.flat.description = Text "A FlatGroup has no vi

grouping.select = ComboGroup "Combo group" checkable grouping.select.sub1 = FlatGroup "Subgroup 1" grouping.select.sub1.description = Text "Combo groups s grouping.select.sub2 = Group "Subgroup 2" checkable grouping.select.sub2.description = Text "Any group can

InputFields = Group "Text input elements" InputFields.description = Text "For default value input InputFields.reals = Input "<Real> (decimal) values:" Re InputFields.ints = Input "<Integer> values." Integer InputFields.dtxt = Input "<Text> values (anything):" InputFields.desUnit = Text "An optional Unit info can b InputFields.orps = Input "counts per second:" Integer cp

PI_C863Mercury

OrientalMotorRK

DeltaTau_GeobrickLW

ESP700

Pcu2000

PollarMoto

CM10

FFMM Measurement Workflow and Data Storage

IMMW23

Permeameter Measurements

Access to Released Data

Magnet		
HCMCBXFB012-E ×		
EDMS Ids		
2792500 × 2824624 ×		
EDMS 2792500 EDMS 2824624		
Cycles		
circular_1 × circular_2 × stair_step_comb × stair_step_co	mb × stair_step_inner × stair_step_outer ×	
Segments		
1 × 2 × 3 × 4 × 5 × Integral ×		
(value		
TIME		
Plot Values		
B3 ×		
circular_1	circular_2	stair_step_combined_pos100_pos80
		0.002 Segment 1 2 3

BH data	
Select view option View by material and project. O View all data	
Select the material(s)	
M220-35A ×	0 ~
Select the project(s)	
LIU septa magnets ×	o ~
Select the measurement()()	
Sample 1 (201.0 K) ×	0 ~
Sample 1 (293.0 K)	

Magnetic Measurements SPS Database 🔁 🗒

prrection Tracking Homogeneity

Coll						Col					
H1+H5					0.0029	HL-MS		-998.259			
H2 - H5					0.0011	H2 - M5					
H3 - H5	-0.9991				-0.0003	H3 - MS					
H4-H5	-0.0005				-0.0029	144 - MS					
HS - HS						HS-HS					
	-0.992				0.0036	NG-MS					
	0.9991				0.0125	147 - MS					
					0.003	H3 - M5					
101-105	-0.0001	4 2648	0.0057	0.0092	0.0111	H9+M5		-398 1077	2,3005	2,3384	23
Vme	as-Vref /	/Vref (E-4	4) correc	cted		Hom	nogeneit	y shown	only fo	r x-axis	coils
Vme	as-Vref /	Vref (E-4	4) correc	cted	4900	Hom	nogeneit	y shown Home	only fo	r x-axis	coils
Vme	as-Vref /	Vref (E-4	4) correct	4000 1.5005 3.X 0.0087 4.0	4900 116 3.2929 149 -0.9776	Hom	nogeneit	y shown Home	only fo ogeneity	r x-axis	coils
Vme	as-Vref /	Vref (E-4	4) correct 2500 7,2564 -44,733	4000 3.5015 3.3 0.0587 4.3 2.6312 2.6	4900 116 3.2929 149 -0.0776 194 2.4354	Hom	nogeneit	y shown Homo	only fo	r x-axis	coils
Vme	as-Vref / Poston 1 4 -11 23	Vref (E-4 50 1000 7.453 0.238 -0.6529 -2.4482	4) correc 2500 -995.579 7.2984 -04.733 -1.1407	4000 3.5005 3.30 0.0007 4.00 2.4232 2.40 0.0223 4.40	4900 116 3.2929 149 -0.0776 149 2.6254 112 -0.5971	Hom	nogeneit	y shown Home	only fo	r x-axis	coils
Col R2-H5 H2-H5 H3-H5 H5-H5	as-Vref / Poston 2 44 -11 23 9	Vref (E-4 50 1000 7.453 0.238 -0.6329 -2.462 0	4) correct 2500 -95579 7.2364 -94.713 -1.1407 0	4000 3.5605 3.33 4.0007 4.3 2.4212 2.46 4.2223 -4.44 0	000 16 3.2929 49 -0.0776 94 2.6254 112 -0.9971 0 0 0	Hom	nogeneit	y shown Homo	only fo	r x-axis	coils
Vme	as-Vref / Postion 1 4 -11 23 0 -35	Vref (E-4 50 1000 7.453 0.238 -0.6529 -2.4682 0 -3.6527	4) correct 2500 -955.579 7.2584 -04.733 -1.2407 0 5.4064	4000 3.5605 3.33 4.0387 4.3 2.4332 2.463 4.6253 -0.44 0 4.6259 4.3	4900 116 3.2929 149 -0.0776 194 2.6254 112 -0.5971 0 0 776 -0.5608	ef (E-4)	nogeneit	y shown Homo	only fo	r x-axis	coils

Integral

-0.0005

2024-10-10

Integral

Integral

Postprocessing Rotating Coil Measurements

Postprocessing step to check, clean and Release Rotating Coll Measurements

Parameters

Selection of Run

- There are multiple ways of selecting a Measurement
- parentWO: Measurement Request Workorder
- · woNumbers: Run Workorder numbers (Rotating Coll measurement runs) magnetNames: Magnet asset names
- · edmsIdsSel: Directly via a list of Run Analysis edms ids

In [4]: removeinput

display(Markdown("""### Version information tm_analysis_tools_package version: (0) *** format(tm_analysis_tools__version_)})

Version information

Im analysis tools package version: 2021.8.14 dev19+o6ccdc09

FFMM Postprocessing

- Postprocessing with Python/Jupyter scripts
 - Retrieve data by measurement request
 - Perform data cleanup and checks on . measurements
 - Generate plots, tables, release data into database
- Reusable
 - Generic template with parameters
 - Customized template for specific magnets
 - Common core classes for processing, plotting and
 - database access .
- Traceable .
 - Common code in version control
 - Applied transformations stored in script on EDMS
 - released data linked to EDMS document .

Int. TF normal

Current: 1755 A

Value A 1754,9999

Int. TF skew

Tm 2.5610

-0 147 -0 087 -0.142 0.123 1.757 -0.340

0.162 -0.097 -1.523 0.423 -0.026 -0.001 0.147 -0.030

12

FFMM Postprocessing Workflow

2024-10-10

Further Postprocessing

- Combine Models and Measurements
 - Avatar: measurement, simulation, inference based on Kirchhoff's theorem
 - Twin: Fusion of measurements, models, empirical rules, machine learning
- Track Avatars, Twins and applied algorithms
- in database
- Improve models with measurement data
- Better understanding of the magnet
- Feedback for new transducers
- or measurements

3ML – Magnetic Model Management Layer

- MBSE
 - Measurement models
 - Simulation models
 - Dependencies
 - Automated workflow
 - Result queries

3ML – Measurement Based Geometry Update

2024-10-10

Conclusion

- Framework to build measurement
 applications
 - Built-in traceability and data storage
 - Measurement, postprocessing, analysis
- Integration in CERN IT infrastructure
- Link with simulations and models

