Advances in Stretched Wire Tomography at Kyma

Peter Topolovšek, Physicist

IMMW #23, Bad Zurzach, Switzerland

About Kyma

(Elettra Sincotrone Trieste, Italy)

Kyma Tehnologija d.o.o. (Sežana, Slovenia)

Core products

- Design, assemble, tune various IDs
 - LPU, EPU, IVU
 - Wigglers, Phase shifters
- Measurement benches
 - Helmholtz Coil System
 - Flip coil and Hall probe bench
 - Software solutions
 - Tomography

Tomography

- Imaging by sections
- "Looking" at something from different directions can give information about the "internals" of it
- Medicine: Computed Tomography
 - X-ray scans in different directions can yield a 3D image
- Mathematical description:
 - Radon and inverse Radon transform
 - $f(l) \rightarrow f(x, y)$: Filtered back-projection transform > FT \rightarrow filtering \rightarrow IFT \rightarrow Back-projection transform

Tomography

Filtered back-projection formula

$$F(x,y) = \frac{1}{2}\mathcal{B}\{\mathcal{F}^{-1}[|S|\mathcal{F}(\mathcal{R}f)]\}$$

 \mathcal{R} , \mathcal{F} , \mathcal{B} — Radon, Fourier, Back-projection transform

$$|S| - filter transform f = f(S, \theta)$$

κλ~~~

- Linear and rotary stage
 - Stepper motors and controllers
 - Induced voltage measurement during linear motion
 - Rotary steps between measurements
- Keithley 2182A
- Single Cu wire loop (100 $\mu m)$
- Raspberry Pi
- Manual wire height adjustments
- Compact and cost-efficient system

Past results

"manual" sinogram correction

Σ

4.2 mm

Uncorrected

N

Β

"Magnetic center" detection algorithm

- Calculate the second field integral
- Find and relocate the half value of second field integral
- Shift each projection of the sinogram accordingly

κλ~~~

"Magnetic center" correction

• Appearance of ripple-like image artefacts

.0050

.0000

Ripple pattern investigation

Magnet 1

• In the center of rotation

Magnet 2

• Off-center of rotation

SWT – Filter comparison (complete z-scale)

SWT – Filter comparison (limited z-scale)

Κ

SWT – Background assessment

KÁvvě

•

SWT – Measurement "repeatability"

• Repeating measurement (10x) of one of the magnets, just above its surface

SWT – Reducing number of measurements by angle

 $\sim \sim \sim$

Recap of stretched wire tomography system

- Alternative method to visualize in-plane properties of magnetic flux density component
 - Measurements close to magnet surface
 - 0.2mm spatial resolution
 - Repeatability below < 1%
- Potential uses:
 - 2D magnetic flux density images of aged or degraded magnets (mechanical or irradiation damage)
 - Learning tool (tomography in general, direct imaging magnet's properties)
- Current limitation: time-consuming measurement
- Future improvement:
 - System synchronization, motor tuning
 - Simultaneous multi-channel measurements

Acknowledgments:

- Mirko Kokole
 Žan Mahnič
 Andrej Nabergoj
- Jure Počkar

