

New Rotating-coil Chains for the HL-LHC Cryomagnets

R. Beltron, <u>G. Deferne</u>, O. Dunkel, L. Fiscarelli, M. Pentella, C. Petrone, P. Rogacki IMMW 23- October 2024

Outline

- Introduction
- MM requirements and Systems
- Rotating Coil Chains
 - The segments
 - PCB sandwiches
- PCBs calibration coils area
- Segments calibration coils radius
- Coils radius calibration
 - Principle
 - The new bench
 - Some results
- Integrated field measurements
 - Gaps compensation
 - Verification against SSW
- Some measurements results
- Conclusion

Introduction

- High-Luminosity LHC upgrade
 - WP3 "IR Magnets": SC magnets based on different technologies (Nb₃Sn for high field, NbTi CCT or nested, super-ferric for correctors)
- 48 series cryo-assemblies to be magnetically measured at cold on SM18 horizontal test benches

Courtesy E. Todesco

iviain characteristics of HL-LHC main magnets for insertion Regions to be measured on norizontal benches											
Cryo-assembly Function	Denomination	Cold Mass	Number of apertures	Aperture diameter	Field at nominal current	Gradient at nominal current	Magnetic length	Integrated field at nominal current	Integrated gradient at nominal current	Units needed	Spare units
				mm	Т	T/m	m	Tm	Т		
Triplet	Q1/Q3	LMQXFA	1	150	n.a.	132.6	4.2	n.a	556.9	16	4
Triplet	Q2a/b	LMQXFB	1	150	n.a.	132.6	7.15	n.a.	948.1	8	2
Separation dipole	D1	LMBXF	1	150	5.6	n.a	6.26	35	n.a	4	2
Recombination dipole	D2	LMBRD	2	105	4.5	n.a	7.78	35	n.a	4	2
Correctors package	ው	Order n = 2, 3, 4, 5, 6,	1	150						4	2

MM Requirements and Systems

ld Mass	r itegrated fie Precision	gradient / Id Accuracy		Integrated	l multipoles		Magnetic	Roll	ongitudinal	l <i>l</i> lagnetic
	Precision	Accuracy	Б				4/13	angle	centre	length
			rs _{ref}	Upton	Precision	Accuracy	Precision	Precision	Precision	l recision
	units	units	mm		units	units	mm	mrad	mm	mm
/IQXFA	1	10	50	10	0.05	0.1	0.2	0.2	5	5
/QXFB	1	10	50	10	0.05	0.1	0.2	0.2	5	5
MBXF	1	10	50	11	0.05	0.1	n.a.	0.2	5	5
MBRD	1	10	35	11	0.05	0.1	n.a.	0.2	5	5
der n =2	10	50	50	10	0.1	0.5	0.4	4	5	3
rder n = 4. 5. 6.	50	100	50	12	0.5	1	0.4	4	5	3
der der de	n=2 ern= 5,6,	n = 2 10 er n = 50 5, 6, 50	rn = 2 10 50 ern = 50 100 5, 6,	rn = 2 10 50 50 rn = 50 100 50 5, 6, 50	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

End of cold tests mid-2027 Target: **3 days / magnet for magnetic measurements**

Required magnetic measurements systems

- Integrated field gradient/strength
 - Single Stretched Wire (SSW) at nominal level Reference @ CERN since LHC
 - Rotating-coils Chains at various excitation cycles (machine, stair step, ramp rate)
- Integrated and local field quality
 - Rotating-coils Chains at various excitation cycles (machine, stair step, ramp rate)
- Field axis, angle and longitudinal centre
 - Single Stretched Wire (SSW) (see Mariano Pentella's IMMW23 presentation)
 - Rotating-coils Chains for longitudinal magnetic centre

Rotating Coils Chains

A rotating-coil chain (previously named "shaft" for the LHC) is an assembly of several rotating coil segments mechanically connected

- Integral and local field measured continuously during current cycles (main field and harmonics)
- Standard resolution in time = 1 Hz
- Magnets of ~10 m in length measured at once
- Cons
 - Price proportional to the number of segments

- 3 chain configurations
 - For Q1, Q2 & Q3 magnets : 6 segments Ø103 mm (2 units)
- For D1 and CP correctors packages : 5 segments Ø 103 mm (2 units)
- For D2 magnets : 7 segments Ø 66 mm (2 units)

The segments

Based on a new design with respect to LHC:

- PCB boards instead of hand-wound coils
- Half-shells made of composite material instead of machined ceramic-tubes cores
- Pros:
 - Lower overall price
 - Easier assembling and calibration
 - Better bucking

Different diameters and lengths are needed to cover the HL-LHC WP3 magnets

- 2 types of segments
 - diameter 103 mm and length 1.3 m
 - diameter 66 mm and length 1.2 m

~50 segments needed (spares included)

Half shells + PCB sandwiches

Half-shells:

- Prototype in carbon fibre: too large torque required due to <u>eddy currents</u> at high field (>3 T)
- Design change to use EPGM
 - Mechanical tolerances on shells manufacturing ≈ 0.2 mm

PCBs characteristics							
For	Numbor	Total		Design	Design		
segments	egments		Layers	magnetic	coils		
diameter		turns		length	area		
mm				m	m ²		
103	5	4	2	1.290	0.049529		
66	5	4	2	1.195	0.055439		

PCBs calibration – coil area

- <u>Performed on raw PCBs</u> by coil voltage integration while manually flipping the PCBs inside the reference dipole magnet
- Reference field mapped by NMR homogeneity < 1 unit
- Calibration typical relative repeatability: 2.10⁻⁵

$$A_{coil} = rac{\psi}{B}$$

- A_{coil} = coil effective surface [m²]
- Ψ = measured integrated flux [Wb]
- B = magnetic field [T]

Reference dipole bench RefDip1

Examples of coils area calibration of PCBs for HL-LHC

Segments calibration – coils radius

- Performed on <u>assembled segments</u>
 - Previous method : flux measurement by accurate lateral displacement of the segment in our reference quadrupole magnet
 - Complex process, accuracy of manual lateral displacement ~1um
- NOT POSSIBLE for HL-LHC 103 mm segments diameter incompatible with magnet aperture

Reference quadrupole bench RefQuad1

Coils radius calibration – principle

- "Integrated flux measurement by rotating the segment in a quadrupole magnet calibrated with Single Stretched Wire systems with segment displacement to cover the field profile"
 - Proof of principle by Andrea Fontanet Valls for her master thesis «Innovative calibration method for rotatingcoil magnetometers", 2022)
 Field profile
- Radius from flux according to:

$$R_{cal} = \frac{L_m \Psi_2}{A_{coil} \int G dl}$$

 R_{cal} = calibrated radius [m]

- L_m = coil magnetic length from design [m]
- ∫GdI = magnet integrated gradient from SSW [T]
- A_{coil} = coil effective surface from calibration in the dipole [m²]
- Ψ_2 = measured integrated flux of 2nd harmonic [Tm²]

- Pros:
 - Flux acquisition in <u>similar conditions</u> as real measurement
 - Simpler than the old method using standard measurement equipment
 - Not sensitive to transversal off-centering (1 mm ~ 10⁻⁵)

Cons:

Non-uniform sensitivity along the coils given by the field profile and the coils length

Coils radius calibration – the new bench

Reuse of reference quadrupole

- Field profile total length \approx 2.3 m
- 125 mm diameter aperture
- 13.338 T integrated field at Inom
- New sliding structure for rotation unit
 - 3 m stroke
 - Linear encoder : positioning accuracy better than 0.1 mm
- Standard acquisition as other rotating coil systems using 5 FDIs and the FFMM software

The radii calibration bench in bdg 311 installed on RefQuad2 magnet

acquisition system

Coils radius calibration – some results

Coils chain 103 mm #1

• Calibration uncertainty over 3 repetitions < 1 unit

Coils radii calibration

Integrated field verification using coil 1

Integrated field measurements - gap compensation

• Principle

- Integrated field measured with a coil chain reconstructed by:
 - Geometrical measurements of each gap between coils with a laser tracker (uncertainty ~0.1 mm)
 - Correction of missing flux due to gaps
 - Extension of the measurement of the adjacent segment

Measurement of the gap between PCBs

Cumulated error between PCBs w/r to design over total chain length (8300 mm) = 1.7 unit

Integrated field measurements – verification vs SSW

- Since the LHC, SSW systems are the reference at CERN for field integral
 - Global wire systems uncertainty on HL-LHC magnets @ cold : <5 units (3σ) (see M. Pentella's presentation)

Integrated gradient difference between rotating coils chains and SSW

Chain	Magnet	units
Prototype - NOT CALIBRATED, BASED ON DESIGN	MQXFBP3	-16.0
Chain 103 mm #1	LMQXFB04	-0.8
Chain 103 mm #1	LMQXFA01	1.0
Chain 103 mm #1	LMQXFBP3	1.1

Q2 with LMQXFB04 magnet under test with SSW and coils chain

Integrated TF measured by coils chain and SSW

Examples of measurement results

- Magnet LMQXFB04, ٠
- Coils chain: 103 mm #1 ٠
- Typical precision over 3 ٠ consecutive machine cycles
 - Integrated TF : < 0.5 unit ٠ Harmonics : < 0.01 unit

2.0

1.5

0.5

0.0

-1.5

-2.0

. ÉRN

Multipole value (units)

Some integrated harmonics

0.0

2.5

5.0

7.5

Current in kA

10.0

12.5

Conclusion

- New rotating-coil chains design validated
- New coils radii calibration bench in operation
 - Method validated
 - To be checked for segments with other geometries (Ø66 mm segments campaign ongoing)
- Segments and chains production status September 2024:
 - Ø66 mm
 - 2 chains in calibration phase
 - Ø103 mm
 - 1 chain for Q1/Q2/Q3 in operation
 - Components ordered and awaiting delivery for 3 more chains (2 spares included)
- HL-LHC measurement campaign
 - Q2, Q3 and D1 prototypes campaign about to be completed, CP before end of year
 - Q2 series magnets started
 - Accuracy and precision according to HL-HC beam dynamics requirements next tests will provide more statistics

Thank you

home.cern