

On-going projects and futur Challenges in the Magnet Section at the Paul Scherrer Institute- an overview

International Magnetic Measurement Workshop 6-11 October 2024, Bad Zurzach

Stéphane Sanfilippo Paul Scherrer Institute

Key points discussed

- Update of magnet activities and of infrastructure
- Magnet measurements for the upgrade of the Swiss Light Source (SLS2.0)- results and lessons learned
- High Field Superconducting Magnet activities-an overview
- Next challenges:
- Magnets for the High Intensity Muon Beam Project (HIMB)
- Superconducting Magnets for low consumption in the High Intensity Proton Accelerator

Magnet section mission

Magnets in operation maintenance & repair & spares (5%)

Magnet design, construction and tests for PSI projects (40%)

> Infrastructure development for magnet assembly and measurements (15 %)

cting Magnets	s (60%)
	 Magnetic design
	•CAD design
	Procurement
	 Assembly (PM &SC magnets)
	•Tests @ 4.2 K and 10 K

•Spare

• Magnetic measurements

• Maintenance & Repair

R&D on magnet technologies

for Room Temperature and

Current activities and projects

Maintenance & repair& replacement of magnets in operation

- High intensity proton accelerator main line
- SINQ & muons beam lines
- PROSCAN lines + Gantries
- Free Electron Laser lines (2)

R&D Measurement techniques

- Power tests –SC magnets
- Field strength
- Field mapping
- Multipoles
- Magnetic axis
- Magnetisation PM magnets

* CHART Program

Magnet procurement for on-going strategic projects

- Upgrade of the Swiss Light Source (SLS2.0)
- MuH2 and MuH3 High Intensity Muon Beam lines (HIMB-IMPACT)

R&D on superconducting magnets

- 14T Nb₃Sn and 20 T hybrid magnets for the FCC*
- Combined function HTS Short Straight Sections for the FCee injector*
- HTS coils for future muon collider magnets*
- HTS coils for compact stellarators*
- HTS solenoids for FCCee injector studies at PSI*
- Advance cyrogenics and LTS/HTS magnets for energy saving program in PSI large research facilities
- Fast ramping & low loss magnets for PSI proton therapy treatment

Growing activities in Superconducting Magnet Technologies

PARK innovAARE –Innovation Park at PSI

gegier@parkinnovaare.ch

Magnet section collaboration with 🕅 🚍 and Proxima Fusion

Focus on a strategic PSI project: The upgrade of the Synchrotron Light Source - SLS2.0 https://www.psi.ch/fr/media/sls-20

Magnets for the SLS upgrade - last reminder

1152 (phase 1)+ two 5 T superconducting superbends (phase 2)

SLS2.0 magnets : the production path

100 % of Permanent Magnets assembly in house 100 % of magnets magnetically measured at PSI

SLS2.0 permanent magnets- last (individual) pictures

SLS2.0 electromagnets last (individual) pictures

Quadrupoles (110) 93T/m-98 T/m Ø=21 mm

Combined functions Octupoles (264-2 types)

24 coils ARMCO yokes and poles Air cooling 3 power supplies (5 A)

B''/2, T/m²	5850
Aperture (Ø) sextupole, mm	22
Yoke Length, mm	84
Yoke mass, kg	93
Current, A	50
B‴/6, T/m³	63000
B' , T/m	2.8
A' , T/m	5.6
Aperture (Ø) octupole, mm	29
Yoke Length, mm	44
Yoke mass, kg	40
Current. A	5

SOQ (264)

Steerers CH/V

SLS2.0 Magnet & Yoke deliveries and spares

NdFeB blocks QP/QPH quadrupoles		3	Sextupole			BN/BE, V	B/VBX Iron yok	es				
		Scheduled Delivery		Scheduled Delivery			Scheduled Delivery					
(540	100)			Date	QTY		Date	QTY			Date	QTY
10000	15/9/		Batch 1		5	PO	5/10/2022	Released		PO	13/6/2022	Released
	22		Batch 2		4	Batch 1	28/2/2023	3		Batch 1	02/12/2022	14
10000	15/1		Batch 3	Delivery	4	Batch 2	30/5/2023	72		Batch 2	15/2/2023	45
	1/22		Batch 4	complete	11	Batch 3	30/8/2023	72		Batch 3	21/4/2023	45
14000	15/0		Batch 5	on	28	Batch 4	30/11/2023	73		Batch 4	31/6/2023	39
14000	1/23		Batch 6	24.08.22	/ 17	Batch 5	01/2/2024	74		Batch 5	13/9/2023	62
Comp	leted		Batch 8		16	Deli	very comple	eted		Delive	ery complet	ted on
			Batch 9		20	the 2.01.2024					30.11.2023	
15/0.	1/25		TOTAL MA	AGNETS	112	TOTAL MA	GNETS	294		TOTALY	OKES	205

Steering magnets						
Scheduled Delivery						
	Date QTY					
	PO	10/11/2021	Released			
	Pre-serie	28/11/2022	1			
	Batch 1	20/12/2022	40			
	Batch 2	26/1/2023	40			
	Batch 3	Batch 3 15/2/2023				
Delivery completed on						
02.15.2023						
	TOTAL MA	GNETS	117			

Octupole						
Scheduled Delivery						
	Date QTY					
	PO	10/11/2022	Released			
	Batch 1	30/5/2023	3			
	Batch 2	17/7/2023	20			
	Batch 3	18/9/2023	44			
	Batch 4	3/1/2024	64			
	Batch 5	15/3/2024	64			
	Batch 6	15/6/2024	73			
Delivery completed on						
15/06/2024						
	TOTAL MA	GNETS	268			

AN/ANM/VE Iron yokes						
Scheduled Delivery						
	Date					
	PO	11/17/2022	Released			
	Batch 1	5/26/2023	3			
	Batch 2	12/15/2023	57			
	Batch 3	1/26/2024	54			
	Batch 4	29/03/2024	30			
	Batch 5	21/06/2024	27			
Delivery completed on						
21/06/2024						
	TOTAL Y	OKES	171			

Assembled magnet and yokes were delivered on time ! A diligent follow-up of the 7 WTOs

Phase 2: 5T NbTi Superconducting superbend

tiend map

March 2024 Construction Drawings ready;	September 2024 Design 2 super VBS	October 2024 Cold mass Test at Manufacturer	January 2025 1 st superbend At PSI		May 2 nd sup At	2025 erbend PSI	Q1 202 Superb Installa	6 ends tion
1 st coils impregnated				Dec. 2024 – Jan. 2025 Preparation	Feb. 2025 Measuremen t of the		Jun July 2025 Measurem	
Installation of SCB 1&2 planed in 2026					SCA		ent of SCB	C.:

Phase 2 : HTS Bulk Undulator (2026)

Marco Calvi with the Insertion Device Group Contribution from A. Arsenault

Calculations done for the future iTOMCAT beamline, dedicated to tomographic microscopy

Bulk HTS sample : Cambridge Ø : 30 mm; Thickness : 4 mm

	Total length [m]	< 2
	Period length [mm]	10
	Magnetic gap [mm]	4.0
	Magnetic Field [T]	2.1
(Sc Coil Field [T]	12
e	К	2
)keV	HTS temp [K]	10
	LTS temp [K]	4.2

10 mm period, 4 mm gap, 2 T Tmag~10 K

Nb₃Sn solenoid (10T): Fermilab

SLS2.0 Permanent Magnets Assembly in PSI

Challenge: Assembly of the 372 Permanent Magnets by PSI staff !

All the magnets are assembled

Infrastructure for SLS2.0 magnets: Magnetic Measurement Lab

Seven magnetic measurement benches are operational since september 2023

PSI

Assembly & Measurement & Support teams for SLS2.0 in 2024 ~ 22 people

Page 1

Test stand for superconducting magnets cooled with cryocoolers

Projects : SLS2.0 Superbends & HTS; PhP; P^3, HTS4..... michal.duda@psi.ch

1: Cryostat

- Thermal radiation shield
- Vacuum pumps
- 3 Cryocoolers (RDK-415D/418D and RDK-500B)
- 2: Test setup for superconducting HTS and LTS coils
- RRR, T_c and th. cond. test
- NI HTS coils test (18.2 T)

3: Electronic rack

- vacuum control/monitoring
- temperature control/monitoring (16 Cernox/ Pt1000 sensors, PID controller)
- voltage signals recording (2 nanovolt/64 high precision/64 fast sampling channels)
- quench detection system (CERN uQDS with PSI modification)

4: Test setup for cryogenic pulsating heat pipes (PHP)

- 10 and 20 tube neon PHP (with VDL ETG)
- 5: 2 kA \pm 10V power converter
- **6: Quench protection**
- mechanical switch (~4 ms) with varistor

SLS2.0 Magnet qualification

Challenge: 100 % of magnets are measured at PSI

7 measuring test benches operational since September 2023

Systems (X benches)	Electro magnets	Permanent Magnets	3-5T superbend	
Rotating coils (2)	Field Strength Multipoles	Field Strength Multipoles Magnetic axis		Accuracy (wire) : 1-2 units Reproduciblity : 1 unit
Moving Wires (2)	Magnetic axis (reference magnet)	Triplet: Field Strength alignment		Axis : < 30 micrometers
Vibrating Wires (2)	Magnetic Axis <mark>(SOQ)</mark>			
3D Field Mapper	Field Strength & Maps (cross talk)	Field Strength & Maps (BE & cross talk)	Field Strength Maps	

Integrated Field Strength	Moving Wire	Rotating Coil	Compact Field Mapper
Uncertainty vs ref. (units)	Reference	<5 units	~10 units

¹⁷ Reliable and accurate measurement systems

Cumulative magnet measurements No sleep till October 2024 but.....We made it !

From September 2023 : all the 7 magnetic measurement benches operational

Magnetic measurements results (phase 1)

Sextupoles &Octupoles axis measurement with vibrating wires: Contribution M. Aiba

Triplet measurements and alignment with Moving Wires Contribution G. Montenero

Field Quality and Field Integral tuning with Rotating Coils: Contribution C. Zoller

Magnetic coupling studies with Hall mapper Contribution R. Riccioli

SLS upgrade-the progress

03.10.2023 Dark time start

Installation Start

07.03.2024

September 2024 10 Arcs

PSI

Last triplet delivered and installed 1.11.2024

Visit of the SLS2.0 storage ring on Wednesday

Courtesy Romain Ganter

SLS2.0 with permanent magnets: **Lessons** learned

- Characterize all the material used for the fabrication : permeability, hysteresis, also at ۲ various temperatures \rightarrow minimize discrepancies calculated vs. measured values (specialized companies? Lab consortium?)
- Include in the magnet design phase and the measurement time plan the magnetic ٠ coupling measurements of most sensitive sub-sets of machine magnets assemblies
- Perform the commissioning of all the test benches *with pre-series magnets* and not ۲ during the series
- Do not under-estimate the number of test benches: the magnetic measurement ۲ equipment and the delivery plan are coupled with the installation plan in the machine and the complexity of the measurements (upgrade from $5 \rightarrow 7$ benches in 2022)
- Include the impact of neighboring magnetic components in the field integral tunning ٠
- Careful follow up of the logistics (assembly pieces, thermal shunts, moderator plates...) ٠ and the safety issues

R&D on very high field magnet technologies -CHART mike.seidel@psi.ch

"CHART, the Swiss Center for Accelerator Research and Technology, was founded to support the future oriented accelerator project Future Circular Collider (FCC) at CERN and the development of **advanced accelerator concepts in Switzerland beyond the existing technology**. [...] The high field magnet R&D has strong synergies with PSI projects [...]" [Application for support of the Swiss Accelerator Research and Technology Initiative, 2018]

- Funded in 2016 as umbrella organization for accelerator research in switzerland
- support FCC and develop future accelerator technologies
- co-funded by CERN, PSI, ETHZ, EPFL and University of Geneva
- Support of the State Secretariat for Education and the ETH Board
- Home Institut : PSI
- PSI : High field magnet technology and demonstrator design and construction

UNIVERSITÉ

DE GENÉVE

HFM

FCCee Injector

Design and positron production test program for FCC-ee Injector

CHART activities at PSI

bernhard.auchmann@psi.ch

Technologies & demonstrators of High Field Magnets

- Magnet design
- **R&D** in LTS and HTS materials (key technologies)
- Coil winding and magnet assembly
- Infrastructure for LTS and HTS • magnet assembly and test
- Synergies with technological development for Large Research **Facilities at PSI**

Achievements since 2018 : MagDev Laboratory

<mark>Visit on Wednesday</mark>

1: Magn. & Mech & CAD Design (7 mobile desks)

2: HTS & LTS coil manufacturing workplace

2 winding machines

6: Assembly tables

- Loading, welding
- Instrumentation
- 3D scanning metrology

3: Thermal Treatment

- Argon-furnace (2-m-long coils)
- Research tubular furnace

1-m-long, 14 cm diam. Quartz tube, vacuum or gas atmosphere up to 1100°C

4: Chemistery workplace

- Spray-coating equipment.
- Ultrasonic cleaning
- Diamond wire saw.
- Polishing equipment.
- Optical microscope

5: Impregnation tools

- Vacuum-impregnation vessel for 1-m-long coils, vertical impregnation.
- Autoclave for 2-m-long coils, horizontal impregnation.
 250°C, 10 bar.

Mixing, degassing set-up

 Box oven for wax crystallization , epoxy curing

Selected achievements since 2018 (2)

Canted Cos θ Nb₃Sn dipole

Subscale Nb₃Sn SM Common Coil

Sextupole demonstrator, cosine-theta type with HTS coils for energy-efficient FCC-ee

LTS Powered Samples BOX: BOnding eXperiment (2019-2022)

And many mores at : https://chart.ch/chart-projects/

Project IMPACT

na scana mana

Conceptual Design Report

SMILE : Superconducting Magnets

End of 2024

a some

SMILE Proposal PSI

Improving Large research facility Efficiency

HIPA Upgrade : magnets for the IMPACT Project

https://www.dora.lib4ri.ch/psi/islandora/object/psi%3A41209

IMPACT = Isotope and Muon Production using Advanced-Cyclotron and Target

 HIMB : High Intensity Muon Beam Line (flux X 100)-2 lines (2027)
 TATTOOS: Radionucleïde for cancer therapy and diagnostics (^{149/152} Tb,¹⁶⁵ Er, ¹⁷⁵Yb,....)- 2029

~ 100 people from 5 PSI divisions are involved

9 subprojects and 35 working groups

HIMB magnets status overview

	EM design	Mechanical design	Next <u>Steps</u>
Capture solenoid	Completed	In progress : 60 % (Coils 75%, yoke 50%)	1) <u>Cooling calculation</u> 2) WTO <u>for coils</u>
Radhard transport solenoid	Completed	<u>Concept</u> : 20% (<u>coils</u> : 75%)	WTO for coils (together with capture Solenoid)
Normal <u>transport</u> solenoid	Completed	In progress : 90 %	3 2D <u>drawings</u> (coil, yoke, assembly)
Radhard dipole 36°	<u>Completed</u>	In progress : 80 %	 2D drawings (ongoing) 2) Final definition of connections (coil is defined →WTO)
Normal dipole 40° and 60°	Completed	In progress : 90 %	3 2D <u>drawings</u> (coil, yoke, assembly)
Chicane magnets	Completed	In progress : 90 %	3 2D <u>drawings</u> (coil, yoke, assembly)
Separator	In progress : 80 %	X	Waiting for confirmation of magnetic design and max. field value

Magnet caracteristics

- Large aperture solenoids (diameter~0.5 m)
- Resistive magnets-first option
- Radiation hard conductors
- Field quality specs (0.1 % of uncertainty)

Page 28

Superconducting magnets in PSI large Research Facilities: context

5 large-scale research facilities: the Swiss Spallation Neutron Source (SINQ), the Swiss Synchrotron Light Source (SLS), the Swiss Muon Source (SµS), the X-ray Free Electron Laser (SwissFEL) and Proton Therapy center with 2 upgrades (SLS2.0 and HIMB)-1384 Magnets

Approach for an energy transition of PSI magnets

PSI

J_c (A/mm²) † 10⁵

- Low field, high density of magnets & low radiation (Light sources) → permanent magnets
- Moderate/high fields & high consumption magnets in highly radiative environment (proton accelerator) → cryogen free superconducting magnets

Aspects to consider :

- 1. Economical study (capital cost, power consumption, CO₂...)
- 2. Operating conditions (Field and Thermal budget -incl. beam deposited energy)
- 3. Radiation damages on superconductor and insulation

Power consumption management for the upgrades SLS 2.0 and High Intensity Proton Accelerator

Power economy SLS2.0 vs. original SLS (2019-2024)

- More radiated X ray power for users (2.4 GeV \rightarrow 2.7 GeV)
- Less electricity consumption: 30 % of electricity reduction (24 W→17 kW)
- Key Savings: Electromagnets → Permanent magnets
 Klystrons → Solid state amplifiers
 standard pumps → modern pumps for cooling

372 permanent magnets (one third)

reduction of 60 % of the magnet consumption

High Intensity Proton Accelerator (SMILE project 2025-?)

- Required for the proton beam : 7.8 MW
- 350 resistive magnets in operation: 34 % power consumption (2.6 MW)
- On going upgrade \rightarrow increase power consumption
- Magnets in operation (future replacement):
- ³¹ Study : High power consumption dipole in Operation AHO \rightarrow Cryogen-free SC one collaboration with LASA Milano

Swiss Federal Program "ProKw"

SMILE : Superconducting Magnets Improving Large research facility Efficiency

Implement cost-efficient and sustainable superconducting magnets in PSI's largescale facilities: High-Intensity Proton Accelerator and PROSCAN (proton therapy)

- Work-packages (numerical & experimental aspects & technology development)
- DC Magnet design & construction (including radiation impact on HTS conductor)
- AC Magnet design and production using selected low loss superconductors
- Advance cryogenics study and implementation (Pulsating heat Pipes, efficient cyrocoolers...)
- *Possible* external partners (Institutions and companies)
- University Alma Matter Bologna- AC losses numerical studies
- CERN (cryostats for AC losses conductor studies)
- Politechnico di Torino- radiation effects calculation and experimental tests
- LASA UNI Milano Magnet design
- University of Aix Marseille numerical calculation on PhP mechanisms
- VDL company- Pulsating heat Pipes development

Program in preparation (not approved yet) – submitted to the PSI direction at the end of 2024

- The production and measurement of a massive number of magnets for the SLS upgrade Phase 1 were successful, and the magnet production for Phase 2 is currently ongoing.
- A tremendous effort was made to develop the infrastructure and parallelize magnetic measurements to comply with the specifications and meet the tight schedule.
- This project required meticulous planning and coordination, and a number of valuable lessons were drawn from this extraordinary scientific and human experience.
- As we move forward, the development of technologies for the design, assembly, and testing of superconducting magnets is becoming an increasingly significant part of our activities.
- Future challenges we are focusing on include the development of high-field, compact, low-consumption, and sustainable magnets.
- Bright prospects are on the horizon, particularly through our collaboration with our partners at Park Innovaare.

18 T@10 K with 4 NI HTS coils

PSI

Celebrating the Nb₃S_n Subscale

Dedication, Setbacks, Unexpected Turns, Achievements, and.... Challenges

Join the magnet section

Thank you for your attention

Additional slides

- 2 superconducting dipoles to provide hard X-rays at two beam lines
- Operating fields between 3 T and 5 T
- 2 pairs of Nb-Ti coils (racetrack, solenoid)
- Close yoke with soldered vacuum chamber
- SC test coils in Fall 2024
- Magnet delivery (Jan-June 2025)
- Power and Magnetic tests (Hall Mapper) in 2025

Phase 2: 5 T superconducting superbend

ciro.calzolaio@psi.ch

Cold mass

Cryogenic power tests and magnetic measurements @ PSI in a dedicated test stand

Example : Impact of the vacuum pump

PM Quadrupole

Vacuum pump

(ferrite magnets)

Reduction of 0.3 % of the Field Integral

Vertical shift of the magnetic axis position by 60 micrometers

Practical example: High Intensity Muon Beam project: Estimated Magnet Consumption (MuH2&3)

Location	Magnet	Number of magnets	Power per magnet	Total power
	Capture Solenoid	<mark>1</mark>	<mark>142.5 kW</mark>	<mark>142.5 kW</mark>
	Dipole	1	3.2 kW	3.2 kW
	Transport Solenoid (A-B)	3	37.5 kW	112.5 kW
	Dipole	1	2.4 kW	2.4 kW
	Transport Solenoid (C)	6	17.9 kW	107.4 kW
	Separator	2	0.45 kW	0.91 kW
	Capture Solenoid	<mark>1</mark>	<mark>142.5 kW</mark>	<mark>142.5 kW</mark>
	Dipole	1	2.3 kW	2.3 kW
MuH3	Transport Solenoid (A-B)	2	35.5 kW	71 kW
	Dipole	2	3.1 kW	6.2 kW
	Transport Solenoid (C)	2	15.4 kW	30.8 kW
Conoral	Other magnets	2	5 kW	10 kW
General	Cable resistance		3%	
	TOTAL			632 kW

Power consumption goes from 120 kW to 632 kW of the new lines

1) Capture solenoid : Superconducting HTS tentative not successful because of lack of space for thick radiation shields

2) Second choice: transport solenoids (13 in the two lines positions A,B,C)

Study for a NbTi (and HTS) superconducting option

HIMB Transport solenoids- NbTi option study

Aperture (inner)/length	650 mm/300 mm
Max current (80 MeV/c)	93 A (with yoke)
Max Mag. Field (80 MeV/c)	0.55 T
Field Integral/Peak field	0.310 Tm / 1.46 T
Turns number	2760
Operating Temperature	4.5 K
Cryocooler RDK-305D	1 (3.6 kW)
Load-line and Temp. margin @1T	72 %, 3-4 K

Problematics in PSI facilities :

d (m)

1

Resistive

SC + yoke

SC

0.5

0.4

0.2

0.1

0.0

 $\bigcirc 0.3$

Э

Energy deposited by beam (T-margin)

2

- Radiation damage on insulation and superconducting coils (>20 years)
- Energy savings (Capital cost vs electricity savings)

3

• Sustainability (CO₂ emission reduction)

Decision for a potential implementation by the direction end of 2024