

Welcome to PSI

23rd IMMW Workshop 9.10.2024

Paul Scherrer Institut

Energy System Integration

🝯 Hotlab

Radiopharmacy

Swiss Muon Source SµS

Swiss Neutron Sources SINQ and UCN

Swiss Free Electron Laser SwissFEL

Proton Therapy

L. C. LONG COMPTON

High-precision Particle Physics CHRISP

Page 2

Paul Scherrer Institut – Mission

Large Research Facilities at PSI

Research at large facilities

Synchrotron Light Source SLS

Spallation Neutron Source SINQ

Muon Source SµS

Free Electron Laser SwissFEL

Biology and Health at PSI

Structure of Proteins

for the targeted development of new drugs **Prof. G. Schertler Prof. M. Steinmetz**

 \Rightarrow Accelerators: SwissFEL, SLS

Nanoscale biology of molecular structure and dynamics in the living cell Prof. G. Shivashankar, Prof. J.P. Abrahams

 \Rightarrow Detectors: EM

Radio Pharmaceuticals

for the diagnosisdestruction of tand therapy of tumoursprotection of heProf. R. Schibli, Dr. R. EichlerProf. D. Weber

 \Rightarrow Accelerators: HIPA, SINQ = \Rightarrow Isotopes, Radiochemistry, CRS

Proton Therapy for destruction of tumours and protection of healthy tissue **Prof. D. Weber**

 \Rightarrow Accelerators: COMET

Catalysis

Understanding and better use of catalytical reactions

More efficient batteries

Scientific Computing, Theory, and Data and Quantum Technologies

New research division of PSI since 2021

Large-scale simulations, modeling, and data science became an integral part of nearly all fundamental and applied science projects.

- **Computational material science, chemistry and biology are a huge opportunity** and Switzerland is leading in these areas.
- Data infrastructure and (open) data management are key to science success.
- Machine Learning/AI and Quantum Computing are new, disruptive technologies.

ATEONAL CENTRE OF COMPETENCE IN RESEARCH

Switzerland Innovation Network

Park Innovaare Residents Today

SwissFEL in a nutshell

ARAMIS

Hard X-ray FEL, λ = 0.1-0.7 nm Linear polarization, variable gap, in-vacuum undulators First users 2017

ATHOS

Soft X-ray FEL, λ = 0.7-7.0 nm Variable polarization, Apple II undulators First users 2020

Main parameters

Wavelength from	1 Å - 70 Å
Photon energy	0.2-12 keV
Pulse duration	1 fs - 20 fs
e⁻ Energy	5.8 GeV
e ⁻ Bunch charge	10-200 pC
Repetition rate	100 Hz

SwissFEL 6 GeV Linac

PAUL SCHERRER INSTITUT

Vacuum tank

K=1.2 g=4.5mm

 $\lambda_{\rm U}$ =15 mm

SwissFEL beamlines

Swiss Light Source, SLS Since 2000 in operation as synchrotron radiation source for 18 user beamlines

Now SLS \rightarrow SLS 2.0

$SLS \rightarrow SLS 2.0$

SLS 2.0 – Milestones

Evolution of SLS \rightarrow SLS 2.0

SLS2.0 Triplet-Magnet VB-BN-VB

Central bend of MBA cell 60 in total, B_{center} = 1.35 T

Permanent Magnet

Pro and con

- + No power consumption
- + No power supply
- + No cooling water
- + Compact
- Field AND geometry to be measured and corrected with great precision
 B better 0.2 %, x,y,z better 20 μm at well defined temperature of 25°C
- No tuning knob in operation \rightarrow *No mistakes allowed!*

Magnet measurements

Undulators und Superbends, the SR sources

New developments For optimum use of SLS 2.0 beam

U10HTS, Superconducting Staggered Array Undulator

Example of *field cooling* magnetisation

T. Kii et al. AIP Conference Proceedings 1234, 539 (2010)

HTSPlanar Hybrid with CAN-HTS Blocks

SLS 2.0 Roof Renewal and Solar Panels

PAUL SCHERRER INSTITUT Power economy SLS2.0 vs. SLS incl. PV roof

- Light; 350 Building Ventillation; 946 ≈ -30% ≈ -35% 20'000 RF Booster; 1'020 - RF Linac; 136 Vacuum; 219 Diagnostics, IT&Controlsystem; 876 15'000 Light: 350 Rack Ventilators; 333 Building Ventillation; 946 — Chillers; 350 Building Ventillation; 946 RF Booster; 1'020 RF Linac; 136 Vacuum: 219 RF Booster: 1'020 10'000 Diagnostics, IT&Controlsystem; 87 Back Ventilators: 0 5'000 **PV:** 1.0-1.5 GWh/y SLS Today SLS 2.0 Yearly Power Consumtion SLS [MWh]

More radiated X-ray power for users Less electricity consumption

 $\begin{array}{c} \text{SLS} \rightarrow \text{SLS2.0} \\ \text{E}_{e^-} & 2.4 \text{ GeV} \rightarrow 2.7 \text{ GeV} \\ \text{P}_{\text{SR}} & 310 \text{ kW} \rightarrow 365 \text{ kW} \\ \text{W}_{elec}/\text{y} & 24 \text{ GWh} \rightarrow 17 \text{ GWh} \\ \text{W}_{elec}^-\text{W}_{\text{PV}}/\text{y} & 17 \text{ GWh} \rightarrow 15.5 \text{ GWh} \end{array}$

Key savings:

 $\begin{array}{l} \mbox{Electromagnets} \rightarrow \mbox{ permanent magnets} \\ \mbox{Klystrons} \rightarrow \mbox{ solid state amplifiers} \\ \mbox{Standard pumps} \rightarrow \mbox{ regulated pumps for cooling} \\ \mbox{Tar paper roof} \rightarrow \mbox{PV cladded roof} \end{array}$

Thank you for your attention

PSI