Center for Experimental Nuclear Physics and Astrophysics (CENPA) University of Washington

Office of Science

PEDER

A next generation rare pion decay experiment

P. Kammel for the PIONEER collaboration

https://arxiv.org/abs/2203.01981

A. Adelmann,¹ W. Altmannshofer,² S. Ban,³ O. Beesley,⁴ A. Bolotnikov,⁵ S. Braun,⁴ T. Brunner,⁶ D. Bryman,^{7,8} Q. Buat,⁴ L. Caminada,¹ J. Carlton,⁹ S. Chen,¹⁰ M. Chiu,⁵ V. Cirigliano,⁴ S. Corrodi,¹¹ A. Crivellin,^{1,12} S. Cuen-Rochin,¹³ J. Datta,¹⁴ B. Davis-Purcell,⁸ K. Dehmelt,¹⁴ A. Deshpande,^{14,5} A. Di Canto,⁵ L. Doria,¹⁵ J. Dror,¹⁶ P. Fischer,¹⁷ S. Foster,⁹ K. Frahm,¹⁷ P. Garg,¹⁴ G. Giacomini,⁵ L. Gibbons,¹⁸ C. Glaser,¹⁹ D. Goeldi,¹⁷ S. Gori,² T. Gorringe,⁹ C. Hamilton,⁸ S. Heinekamp,^{1,17} C. Hempel.⁸ D. Hertzog,⁴ S. Hochrein,¹⁷ M. Hoferichter,²⁰ S. Ito,²¹ T. Iwamoto,³ P. Kammel,⁴ E. Klemets.^{8,7} K. Labe.¹⁸ J. Labountv.⁴ U. Langenegger.¹ Y. Li.⁵ C. Malbrunot.^{8,6} A. Matsushita.³ S. M. Mazza,² S. Mehrotra,¹⁴ S. Mihara,²² R. Mischke,⁸ A. Molnar,² T. Mori,³ T. Numao,⁸ W. Ootani,³ J. Ott.² K. Pachal.⁸ D. Pocanic.¹⁹ X. Oian.⁵ D. Ries.¹ R. Roehnelt.⁴ T. Rostomvan.¹ B. Schumm.² P. Schwendimann,⁴ A. Seiden,² A. Sher,⁸ R. Shrock,¹⁴ A. Soter,¹⁷ T. Sullivan,²³ E. Swanson,⁴ V. Tishchenko,⁵ A. Tricoli,⁵ T. Tsang,⁵ B. Velghe,⁸ V. Wong,⁸ M. Worcester,⁵ E. Worcester,⁵ C. Zhang,⁵ and Y. Zhang⁵ ¹Paul Scherrer Institute ²University of California Santa Cruz ³The University of Tokyo ⁴University of Washington ⁵Brookhaven National Laboratory ⁶McGill University ⁷University of British Columbia ⁸TRIUMF ⁹University of Kentucky ¹⁰Tsinghua University ¹¹Argonne National Laboratory ¹² University Zurich ¹³ Tecnologico de Monterrey ¹⁴ Stony Brook University ¹⁵ Johannes Gutenberg University ¹⁶ University of Florida ¹⁷ ETH Zurich ¹⁸ Cornell University ¹⁹ University of Virginia ²⁰ University of Bern ²¹ Kitakyushu College ²² KEK ²³ University of Victoria

Supported by the U.S. Department of Energy, Office of Science, Offices of High Energy Physics and Nuclear Physics; the U.S. National Science Foundation; JSPS KAKENHI (Japan); Natural Sciences and Engineering Research Council (Canada); TRIUMF; the Swiss National Science Foundation and PSI.

Universality, Unitarity and Rare Pion Decay

Charged currents are mediated by the exchange of W boson between left-handed fermions

• The gauge coupling is the same for all fermions

PIONEER Phase I

$$\label{eq:Vud} \begin{split} |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 \\ \\ \textbf{CKM Unitarity} \end{split}$$

PIONEER Phase II

- PIONEER will test these fundamental properties for both leptons and quarks
- and will also search for weakly coupled particles

PISCEER

- Physics
- Concept
- Components
- Summary

Additional motivation from existing flavor anomalies

- Muon g-2
- Cabibbo angle anomaly
- hints in B decays

Physics Case I: Precision Test of Lepton Flavor Universality

• Pion decay ratio $R_{e/\mu} = \frac{\Gamma(\pi \to e\nu(\gamma))}{\Gamma(\pi \to \mu\nu(\gamma))}$ $R_{e/\mu}(Exp) = 1.23270(230) \times 10^{-4} \quad (0.18\%)$ $R_{e/\mu}(SM) = 1.23524(015) \times 10^{-4} \quad (0.01\%)$ $\frac{g_{\mu}}{g_{e}} = 1.0010 \pm 0.0009$ <u>PIENU at TRIUMF</u> <u>Cirigliano & Rosell</u>

 Very high precision SM prediction theory 15x more precise than experiment

$$R_{e/\mu} = \frac{\Gamma[\pi \to e\nu(\gamma)]}{\Gamma[\pi \to \mu\nu(\gamma)]} = \left|\frac{g_e}{g_\mu}\right|^2 \frac{m_e^2}{m_\mu^2} \left(\frac{m_\pi^2 - m_e^2}{m_\pi^2 - m_\mu^2}\right)^2 (1 + \text{EW corrections})$$

$$LFU \text{ helicity phase space space suppression Suppression EFT calculation}}$$

 Clean, generic way to search for new physics reaching 0.01% precision level for the first time

′FFR

- PIONEER physics reach
 - unprecedented LFU sensitivity 10⁻⁴
 - many BSM scenarios exist
 - $Wl\nu$ coupling, 4-fermion operators
 - sensitive to high mass scales
 - ~30-1000 TeV pseudoscalar
 - ~ 30 TeV axial-vector

Peter Kammel – PIONEER – BVR 55

Reality with state-of-the art detector

Separate energy spectrum at $E_{HE} \sim 52 \text{ MeV}$

$$R_{e/\mu} \sim \frac{HE \; events}{LE \; events}$$
 ?

Take aways:

- significant rad. tail for $\pi^+ \rightarrow e^+ \nu$
 - reduce tail with deep CALO to O(1%)
- measure tail in e⁺ beam and in situ
- time spectra remain powerful for separation of event types
- information beyond CALO critical to suppress background @ 10⁻⁴ precision

PIONEER strategy and components

Beam: piE5 @ PSI - World's Brightest Stopped Pion Beam

- Progress 2023
 - PIONEER requirements and test beam 2022 results
 - Rate: 300k π/s stopped in ATAR: ok at 65 MeV/c
 - Momentum bite: ∆p/p <2%: marginal
 - Spot size: <2 cm FWHM: not achieved
 - μ,e less than 10% $\pi:$ needs second focus extension
 - improved understanding and optimization
 - non-linear effects due to large phase space
 - beamline model with G4BL
 - novel promising machine learning approach (Adelmann et al)
- Plans 2024
 - machine learning
 - extend machine learning to full beam line
 - · optimization of beam properties
 - prepare experimental verification
 - beam design
 - 2nd focus extension
 - better focus
 - retune for smaller $\Delta p/p < 2\%$

P. Fischer, Semester Project ETH

request PSI support in design

PISCEER

- Physics
- Concept
- Components
- Summary

Active Target ATAR 5-D tracker is key to separate events

- Motivation
 - DAR decay at rest
 - DIF decay in flight

 $R_{\pi} \sim 4$ mm, $R_{\mu} \sim 0.8$ mm

- Physics
- Concept
- Components
- Summary

• Specs

5-D tracker can provide rich information (x, y, z, t, E)

- 20 x 20 x 5.76 mm
- 48 sensor layers with
 120 µm thickness, 200 µm strips
- $-\Delta t \sim 200 \text{ ps}$, pulse pair 2 ns
- $\sigma_E < 10\%$

- Baseline Technology
 Low Gain Avalanche Diodes LGADs
 - High granularity sensors under development
 - AC LGADs most common
 - TI (trench isolated) LGADs favorable for PIONEER
 - Non-linear for large dE/dx due to gain saturation
 - PIN diodes explored as alternative

ATAR R&D

- Development directions
 - optimal customized PIONEER sensor
 - fully depleted 120 μm sensor, double sided with new stacking idea
 - minimal cross talk, small gain saturation, large dynamic range
 - Interface and Electronics
 - frontend chips and board, digitizer for 5000 channels
 - Integration into stack with minimal dead material
- Progress 2023
 - Sensors
 - First production of double-sided strip sensors at BNL more information and clean stacking
 - LGAD energy resolution measured in the SSRL X-ray beam line (https://dx.doi.org/10.1088/1748-0221/18/10/P10006)
 - LGAD gain saturation studied with protons at CENPA (https://indico.cern.ch/event/1184921/contributions/5574780/)
 - New AC-LGAD showed reduced charge sharing (https://indico.cern.ch/event/1184921/contributions/5574830/)
 - Electronics
 - First prototype multi-sensor front end board design ready for production
 - Characterization of FAST chip and AS-ROC alternative chip (<u>https://indico.cern.ch/event/1255624/contributions/5445271/</u>)

CENPA test with protons

• Goals 2024

- Sensors
 - Characterization of new BNL sensors and new production based on tests and TCAD simulations
 - Characterization of TI-LGADs and thicker LGADs from FBK
 - Acquisition of thin, double-sided Silicon sensors from Micron
 - Study of new LGAD devices with test beams at SSRL and at CENPA
 - Conclude analysis of the PSI test beam data
- Electronics/Integration
 - multi-sensor FEB testing with sensors, towards sensor stack
 - · Double LGAD. Two sensors close packed and insulated by parylene
 - Fabrication of improved flexes after tests and simulation
 - Testing readout chips for low-noise PIN readout

Powerful LXe CALO is Baseline Design

Specifications

- i. $\sim 3\pi$ coverage, high uniformity
- ii. fast: sub-ns timing, ~40 ns decay
- iii. resolution
 - 1.5-2% peak resolution
 - ~20 radiation length X_0 for tail suppression
- iv. pile-up separation, segmentation ?

LXe fulfills requirements i-iii (demonstrated by MEG 900L calo)

- Conceptual design
 - ~ 7t LXe in vacuum isolated dewar
 - entrance windows Be or Ti
 - service and disassembly possible
 - infrastructure from MEG

PISCEER

Physics

sensitive volume and PMTs

Alternative crystal (LSYO) CALO R&D							simple infrastructure		Property Resolution	LXe		
Detector	Density	dE/dx	X_0	R_M	Decay time	λ_{max}	Light output		Segmentation	R&D	4% : natural	b)
LXe	$\frac{\text{g/cm}^3}{2.953}$	$\frac{\rm MeV/cm}{\rm 3.707}$	cm 2.872	cm 5.224	ns 3, 27, 45	nm 178	<u>%</u> 100		Photosensors	VUV	standard	
LSO(Ce)	7.40	9.6	1.14	2.07	40	402	85		Experience	MEG	mainly small Xtal for PET	

Progress / Plans on LXe R&D and prototyping

- LoLX @ McGill (2 L) nEXO
 - small and versatile test LXe test set-up
 - goals
 - photosensor performance (SiPM and VUV PMT)
 - separation of scintillation and Cherenkov light with optical filters

Photosensor assembly built at TRIUMF

- plans 2024
 - upgrade with a recirculation pump and purity monitor
 - add optical filters for IR/Cherenkov detection
 - continue developing Chroma optical photon transport for validation

- MEG large LXe prototype (~120 L)
 - aim for test beam in 2025
 - goals
 - measure energy resolution and detector line shape including contribution of photonuclear reactions
 - study effect of optical coating on energy resolution, optical segmentation, benchmark simulations

envisioned sensitive volume L= 20 X₀ (~60 cm) R= 25 cm

PER

Components

• Summary

PhysicsConcept

- plans 2024
 - purchase/acquire remaining 80 L of xenon
 - construction of inner photosensor assembly and commissioning (outside of cryostat) at TRIUMF
 - upgrade gas handling, purification and storage system
 - new cryostat windows

Successful LYSO Test Run at PSI

- LYSO Test run at PSI (πM1 Nov 2024)
 - scan 10 crystal array with e⁺ beam, 30-100 MeV
 - demonstrate resolution
 - measure backscattering albedo
- Results
 - LYSO energy resolution ~1.8% at 70 MeV
 - Longitudinal uniformity better than 3%

This would smear the resolution for a LYSO PIONEER CALO by less than 0.25% (so it is a minimal contribution)

0.35

0.30

G 0.25

0.20

0.15

0.10

100

110

120 Theta [Degrees]

[%]

.

140

130

10x LYSO 2.5x2.5x18 cm³

new SICCAS crystals

10-element LYSO array

Nal(TI) as tail catcher

Calorimeter on x-y table with upstream beam telescope

• Plans 2024

- value engineering
 - calo inner radius and X_0
- tapered prototype
- realistic costing

Simulation and Analysis: ATAR powerful in background and tail suppression

daring the impossible

PISCER

Physics

1.5% energy resolution

 $\pi \rightarrow \mu DIF \rightarrow e$

60

 $\pi \rightarrow e$

- Concept
- Components
- Summary

µ decay in flight suppression

 plane position with max E total energy deposit · goodness of linear track fit in x- & y-orientation t_e within 2-32 ns · individual energy deposits in 50x suppression the last five planes before the pion stopping plane

· pion stopping plane position

PIONEER analysis, Buat

- ΔE in first μ pixel ٠
- π z-position with dE/dx
- . . .

 $\pi DIF \rightarrow \mu \rightarrow e$

e+ Energy [MeV]

20

PIONEER analysis, Wong

10-

10-

10-

10

10-8

10-9

10-10

10-11

10-12

 $-\pi \rightarrow \mu \rightarrow e [\mu \text{ DAR}]$

 $\tau \rightarrow e [\pi \text{ DAR}]$

 $t \rightarrow \mu \rightarrow e [\mu \text{ DIF}]$

Summary

• Exiting physics to be explored with PIONEER

- Lepton Flavor Universality Violation
 - pushing the discovery limit by one order of magnitude
 - probing very high mass scales, up to 1000 TeV
 - possible connection to existing flavor anomalies
- Typically factor 10 improved sensitivity in Exotic Physics Searches

• PIONEER status and plans

- a growing international collaboration (HEP, NP, instrumentation, theory)
- experimental challenges requiring state-of-the-art technology are actively being investigated
 - · Intense and well focused stopped pion beam
 - 5-D tracking in a compact active target
 - Very high resolution, deep and fast EM calorimeter
 - Advanced trigger, digitization, DAQ
 - Simulation is key in design and analysis
- 2024
 - Continued R&D to validate technology choices and define experimental baseline and alternatives

Exciting times with a brand-new experiment with many concepts still on the drawing board, **and new ideas**, **expertise and collaborators are very welcome!**

Important past dates 2022 Approved with high priority by <u>PSI PAC</u> 2022 Snowmass <u>Whitepaper</u> 2022-23 Endorsed and aligned to <u>Fundamental Symmetries, Neutrons and Neutrino Whitepap</u> and <u>NSAC Long Range Plan</u>