

0

n2EDM: Quest for the

Electric Dipole Moment

LTP(izza!)hD Seminar

Victoria Kletzl

An experimentalist's view on the EDM

An experimentalist's view on the EDM

• Separation of charges $\implies d_n$

An experimentalist's view on the EDM

- Separation of charges $\implies d_n$
- $d_n \neq 0 \implies$ CP violation

Search for the nEDM

•
$$d_{n,SM} \sim 10^{-32} e \text{ cm}$$

•
$$|d_{n,2020}| < 1.8 \times 10^{-26} e \text{ cm}$$

New Physics!

How to detect a nEDM?

• Measure neutron precession frequency:

 $hf_L = d_n E$

How to detect a nEDM?

• Measure neutron precession frequency:

 $hf_L = d_n E$

• BUT:

 $f_L \approx 7 \text{ nHz}$

We need a trick ...

Use the magnetic moment!

- neutron's magnetic moment μ
- Apply magnetic field B₀
- Observe Larmor precession

Depends on orientation of *E*

$$hf_L = 2(\mu B_0 \pm d_n E)$$

 ≈ 30 Hz ≈ 7 nHz

Interlude:

Ramsey's method of separated oscillating fields

Ramsey's method

Polarised neutrons

Ramsey's method

Polarised neutrons

 $\frac{\pi}{2}$ - pulse

Ramsey's method

Scan of $f_{\rm OSC}$

$$A(f_{osc}) = \frac{(N_{\uparrow} - N_{\downarrow})}{(N_{\uparrow} + N_{\downarrow})}$$

Scan of f_{OSC}

$$A(f_{osc}) = \frac{(N_{\uparrow} - N_{\downarrow})}{(N_{\uparrow} + N_{\downarrow})}$$

Scan of $f_{\rm OSC}$

$$A(f_{osc}) = \frac{(N_{\uparrow} - N_{\downarrow})}{(N_{\uparrow} + N_{\downarrow})}$$

So, what do we need for n2EDM?

Think super basic ;)

Our ingredient's for a successful experiment:

- Neutrons!
- High electric field
- Spin dependent neutron detection

$$\sigma(d_n) = \frac{\hbar}{2\alpha ET\sqrt{N}}$$

• Precisely known and controlled magnetic fields

Neutrons @ n2EDM

- Ultracold neutrons (UCN)
- Produced via spallation + cooling
- < 300 neV
- 5 m/s
- Reflected off materials (storage possible!)

Electric field @ n2EDM

 $\overrightarrow{B_0}$

1 HV electrode (± 180kV)
2 ground electrodes

Neutron detectors @n2EDM

- Gaseous detector
- Capture neutrons: $n + {}^{3}He \rightarrow p + {}^{3}_{0}H$
- Scintillation in CF₄

Spin down

Magnetic field @ n2EDM

- Passive magnetic shield
- Active magnetic shield
- B_0 coil + 56 trim coils
- 2 Magnetometry systems
 - 1. Hg co-magnetometer
 - 2. Cs array

The n2EDM experiment

And then last year ...

Our first Ramsey cycle!

Did we already find the nEDM?

Unfortunately, no ... 🟵

(Experiments are never as easy as we hope!)

We still have some things to look forward to!!

- Online magnetic field characterisation
- Increased neutron statistics
- High voltage

We still have some things to look forward to!!

- Online magnetic field characterisation
- Increased neutron statistics
- High voltage

$$d_n = ? \times 10^{-27} e \text{cm}$$

Tours?

Thr 22.2. 5pm/after the colloquium Fr 23.2. 5pm

(Or just e-mail me any time)