

Course overview

Monday, 30th September

08:00-09:30 Basic physics	Prof. Tony Lomax
10:00-11:30 Delivery and verification	Dr. Nicolas Perichon
11:30-13:00 Lunch	
13:00-14:30 Imaging	PD Dr. Jean-Francois
	Germond
15:00-16:30 Beam shaping	Prof. Uwe Schneider

Tuesday, 01st October

08:00-09:30 Treatment p∥anning	Prof. Uwe Schneider
10:00-11:30 TPS evaluation	Prof. Tony Lomax
11:30-13:00 Lunch	
13:00-14:30 Brachytherapy	Dr. Dario Terribilini
15:00-16:30 Radiation protection	Prof. Uwe Schneider
16:30-17:30 Tour of the department	Optional

Wednesday, 02nd October

08:00-09:30 Dosimetry	Dr. Jürgen Besserer
10:00-12:00 Special techniques	Prof. Tony Lomax &
	Prof. Raphael Moeckli

Tony Lomax :: Head of Medical Physics :: Paul Scherrer Institute Department of Physics :: ETH-Zurich

The physics background to radiotherapy

FMH physics training, 30th September 2024

Overview of presentation

- **1. A brief history of radiotherapy**
- 2. Fundamentals of radioactivity
- 3. Interactions of radiation with matter
- 4. The physics of radiotherapy

The fundamentals of radiotherapy

Energy deposited by radiation (dose = J/kg or Gray) through ionization can damage DNA and thus sterilise cells

How it all began

Timeline

1895

Wilhelm Roentgen – Discoverer of X-rays on 8th November 1895

The first treatments

Timeline

Emil Grubbe – The first radiotherapy treatment of a recurrent breast cancer in the last days of January 1896, just weeks after the announcement of Roentgen's discovery of X-rays

Thor Stenbeck - A first(?) successful treatment of a basalcell skin carcinoma of the nose The patient was living and well 30 years later.

Increasing the energy (1)

Timeline

William Coolidge – Inventor of the X-ray tube. The heated cathode is on the left, and the anode is right. The X-rays are emitted downwards.

1919

1. A Brief history of radiotherapy

The beginning of radiotherapy in Switzerland

SIEBZEHN JAHRE STRAHLENTHERAPIE DER KREBSE **ZÜRCHER ERFAHRUNGEN 1919-1935** VON HANS R. SCHINZ UND ADOLF ZUPPINGER MIT 15 ABBILDUNGEN UND 213 TARELLEN GEORG THIEME / VERLAG / LEIPZIG

Aus dem Röntgeninstitut der Universität Zürich (Prof. Dr. H. R. Schinz).

Die fraktionierte und protrahiert-fraktionierte Bestrahlung*). Zürcher Erfahrungen.

Von

Hans R. Schinz.

Mit 30 Bildern.

Im Rahmen der Besprechung der verschiedenen Methoden der Strahlenbehandlung ist mir die Erörterung der fraktionierten und protrahiertfraktionierten Strahlenbehandlung zugefallen. Auf Wunsch der Kongreßleitung des I. Kongresses der Österreichischen Gesellschaft für Röntgenkunde und Strahlenforschung habe ich in der Festnummer der Wiener medizinischen Wochenschrift vom 29. August 1936 bereits in Form einer kurzen Zusammenfassung ausgeführt und in einigen Tabellen des näheren erörtert, wie wir in Zürich bei der Behandlung der bösartigen Geschwülste

l diese kurze Mitteilung näher begründet und durch ustriert werden. Ich beschränke mich auf die Strahlensartigen Geschwülste und lasse das ganze große n Strahlentherapie weg. Ebenso verzichte ich für terung der biologischen Grundlagen, welche uns zu geführt haben. Ich beschränke mich einleitend Prinzipien ins Gedächtnis zurückzurufen, die im ritten anerkannt sind und die die Grundlagen der hen Behandlung sämtlicher bösartigen Geschwülste s folgende Leitsätze:

entherapie der Malignome ist eine Lokaltherapie. sie sich prinzipiell nicht von der chirurgischen Therapie. erd muß eine kanzerizide Dosis oder Krebss erhalten, deren Höhe abhängig ist von der Art vor allem von der Applikationsweise der Strahlen. g der Strahlung ist eine direkte, auf den Tumor bszelle wird geschädigt. Hinzu kommt eine direkte

h einem Referat auf dem I. Kongreß der Österreichischen inkunde und Strahlenforschung, Wien 4.--8. September 1996. Band. 25

Adolf Zuppinger – An early pioneer of radiotherapy in Switzerland

Timeline

1937

1. A Brief history of radiotherapy

Increasing the energy (2)

Ralph Phillips and George Innes

- Development of 1 MeV X-ray tube on rotating gantry at St. Bartholomew's, London.

Robert van der Graaf – Inventor of the van der Graaf generator. Shown is the 2MV van der Graaf unit at the Royal Marsden Hospital in London

```
PAUL SCHERRER INSTITUT
```

Increasing the energy (3)


```
PAUL SCHERRER INSTITUT
```

Timeline

1953

1957

1. A Brief history of radiotherapy

Increasing the energy (4)

The Mullard (Philips) 4 MV double gantry linac. First installed at Newcastle Hospital, UK

Stanford USA - First application of a 6MV linear accelerator (developed by **Ising** and **Wideroe** in the late 1920's) in radiotherapy

Timeline

1980's

1990's

1. A Brief history of radiotherapy

The power of the computer

3D based computer based treatment simulations(3D treatment planning)

The multi-leaf collimator – computer controlled collimation of treatment fields

Computer assisted optimization of treatments – Intensity Modulated Radiotherapy (IMRT)

Where we are now

The role of physics

Overview of presentation

- **1. A brief history of radiotherapy**
- 2. Fundamentals of radioactivity
- 3. Interactions of radiation with matter
- 4. The physics of radiotherapy

Classification of Radiation

Type of effect

- Non-ionising radiation (E.g. RF, microwaves etc.)
- Ionising radiation:
 - Directly ionizing (charged particles: electrons, protons, alpha-particles etc.)
 - Indirectly ionizing (uncharged particles: X-rays, gamma rays, neutrons)

Types of ionising radiation

- Particle radiation (solid projectiles: electrons, protons, alpha-particles, neutrons etc.)
- Electromagnetic radiation: photons (gammas, X-ray, ...)

2. Fundamentals of radioactivity

Microscopic View -Description of matter

Particles making up an stable atom:

- ■*Z* Protons
- Neutrons
- ZElectrons

$${}^{A}_{Z}X_{N}$$

Atomic weight: A = Z + NProtons and neutrons are known as nucleons

Models of the Atom

Bohr's Model of the Hydrogen Atom

- Combination of Rutherford's model and Planck's Idea of quantitized nature of radiation processes
- Electrons populate orbits without loosing energy despite being constantly accelerated
- The angular momentum of electrons in an allowed orbit is quantitized (=> 'Quantum Physics')
- Emission of radiation occurs only when an electron transits from one orbit to another

Models of the Atom

E.g. Energy levels of Bohr's Model

Hydrogen atom with its energy levels

Radiation sources – Radioisotopes

PAUL SCHERRER INSTITUT

Radiation sources – Radioisotopes Examples of radioactive decay mechanisms β^- Decay $n \Rightarrow p + e^- + U$ The spontaneous decay of a $_{Z}^{A}X \Longrightarrow_{Z+1}^{A}Y + e^{-} + \overline{U}$ neutron into a proton and an electron (+ an anti-neutrino!) β^+ Decay $p \Rightarrow n + e^+ + U$ The spontaneous decay of a $^{A}X \Longrightarrow ^{A}Y + e^{+} + U$ proton into a neutron and a positron (+ a neutrino!) Z = Z-1 α Decay The spontaneous emission $A_{Z} X \Longrightarrow_{Z-2}^{A-4} Y + {}^{4}_{2} \alpha$ from a high-Z nucleus of an alpha particle

Radioactive decay

Quantity/ Unit:

Decay results in a decrease of radioactivity within the sample

$$A = A_0 \cdot e^{-\lambda \cdot t}$$

$$\frac{A_0}{2} = A_0 \cdot e^{-\lambda \cdot T_{1/2}} \implies \lambda = \frac{\ln 2}{T_{1/2}}$$

Radiation sources – Radio-isotopes E.g. The decay scheme of Co-60

The most important radioisotope for radiotherapy...

•β- decays which leaves the nucleus in an excited state

 Nucleus then 'relaxes'to the final decay product (60-NI) through two stages

 For first 'relaxation' a photon of 1.17MeV is emitted

For the second a photon of1.33 MeV is emitted

From: http://en.wikipedia.org/wiki/File:Cobalt-60_Decay_Scheme.svg

Radiation sources – Radio-isotopes

⁶⁰Co-Gamma spectrum

wiki/Gammaspektroskopie

Overview of presentation

- **1. A brief history of radiotherapy**
- 2. Fundamentals of Radioactivity
- 3. Interactions of radiation with matter
- 4. The physics of radiotherapy

Electrons

Electron-matter interactions

Principle interactions of *charged* particles

- Interaction with shell electrons
 - Elastic scattering
 - Excitation
 - Direct ionisation
- Interactions with nuclei
 - Elastic scattering
 - Bremstrahlung
 - Nuclear interactions

Electron-matter interactions

E.g. Spectrum from typical X-ray tube

Photons

Photon-matter interactions

Principle interactions

- Elastic Scattering (Rayleigh~, Thomson~)
- Absorption by electrons (photoelectric effect)
- Inelastic scattering (Compton scattering)
- Absorption by the nucleus or its Coulomb-field (pair production)

3. Interactions of radiation with matter - Photons

Photon-matter interactions

The Photoelectric Effect τ

- Removal of an interior shell electron
- Steep decrease in probability with increasing energy
- Strong dependency on absorber's Z
- Linear density dependency much less important than Z relation.

Photon-matter interactions

The Compton effect σ

Photon-matter interactions

The Compton effect σ

$$h \cdot v = E_{kin}^{e-} + E_{bind}^{e-} + h \cdot v'$$
$$\sigma \propto \frac{Z}{A} \rho$$

- Removal of a loosly bound outer shell electron (binding energy small)
- Z/A approximately constant (0,4 0,5)
- Linearly related to density

3. Interactions of radiation with matter - Photons

Photon-matter interactions

Pair production κ

 E_{γ} > 1022 keV

 E_{γ} >2044 keV

Photon-matter interactions

Pair production κ

$$h \cdot \nu = E_{kin}^{e-} + E_{kin}^{e+} + 2E_0^{e+/-}$$
$$\kappa \propto Z \cdot \rho \cdot \lg(h \cdot \nu)$$

- Rest energy (mass) of an electron/positron = 511 keV
- Low energy border at: 2*m_e*c² = 1022 keV
- Overwhelms Compton scattering ($\sigma/\rho = \kappa/\rho$) at 25 MeV in water

Photon-matter interactions Photon attenuation

Loss of photons (scattered/absorbed) as function of penetration of beam

Photon-matter interactions Photon attenuation

Photon-matter interactions Attenuation coefficient

All attenuation coefficients are density-dependent => Formalism of mass attenuation coefficient (attenuation per unit mass)

$$\mu_m = \mu / \rho$$

Linear attenuation coefficient $\boldsymbol{\mu}$	1 / cm
Mass attenuation coefficient μ_m	cm²/g

3. Interactions of radiation with matter - Photons

Photon-matter interactions Attenuation coefficient

Protons

Electrons and protons compared

$m_{p} = 1800 \text{ x } m_{e}$

My bike ~ 6.5kg

Principle interactions of protons.

Interactions of protons Energy loss

Range and shape of the depth dose curve (Bragg peak) dependent on incident energy

Ranges in water

210MeV – 28cm

Jose [arbitrary units]

100MeV – 7.5cm

Overview of presentation

- **1. A brief history of radiotherapy**
- 2. Fundamentals of radioactivity
- 3. Interactions of radiation with matter
- 4. The physics of radiotherapy

Ionisation and radiation damage

Radiation induced *ionisation* damages DNA either directly (rare) or indirectly through production of oxygen free-radicals (more common)

It's all to do with ionisation...

Scatter

Generating electrons for radiotherapy

https://www.slideshare.net/Julfikar2/discussion-about-machines-of-radiotherapy-linac-cobalt-60

Electrons in radiotherapy

Generating photons for radiotherapy

https://www.slideshare.net/Julfikar2/discussion-about-machines-of-radiotherapy-linac-cobalt-60

https://www.researchgate.net/figure/The-X-ray-energy-spectra-of-Linac-2_fig13_299974488

The photon depth-dose curve

The photon depth-dose curve Energy is deposited by secondary electrons, *not* by photons (hence considered *indirectly* ionizing...)

Secondary electron tracks after ionisation

https://www.slideshare.net/snaqvi69/visualizing-radiation-physics

The photon depth-dose curve

Energy is deposited by secondary electrons, not by photons

The importance of the electron build-up

Photons in the patient (1)

Dose distribution for 15 MeV photons

Photons in the patient (2)

Thanks for your attention

PAUL SCHERRER INSTITUT

Literature:

- Dosimetrie ionisierender Strahlung, H. Reich, B.G. Teubner, Stuttgart, 1990
- Strahlenphysik, Dosimetrie und Strahlenschutz in zwei Bänden, B.G. Teubner, Stuttgart, 1992 (Bd.1) & 1997 (Bd. 2)
- Radiation Oncology Physics: A Handbook for Teachers and Students. E.B. Podgorsak, IAEA-Publication, 2005 (available via internet)
- <u>http://de.wikipedia.org/wiki/Hauptseite</u>

Course overview

Wednesday, 02nd October

08:00-09:30 Dosimetry	Dr. Jürgen Besserer
10:00-12:00 Special techniques	Prof. Tony Lomax &
	Prof. Raphael Moeckli