

Modern Treatment Planning

FMH/SGSMP Residents physics course

Treatment planning is the process of determining the most appropriate way to irradiate the patient

- 1. Choosing an appropriate patient positioning and immobilisation method so that treatments will be reproducible;
- 2. Identifying the shape and the location of the tumor and of the neighbouring organs at risk;
- 3. Selecting a suitable beam arrangement;
- 4. Evaluating the resulting dose distribution;
- 5. Calculating the treatment machine setting to deliver the required absolute dose.

University of

Zurich^{⊍z⊭}

HIRSLANDEN

PATIENT IMMOBILISATION

Head immobilisation accessories:

Patients to be treated in the head and neck or brain areas are usually immobilized with a plastic mask which, when heated, can be moulded to the patient's contour.

The mask is affixed directly onto the treatment couch or to a plastic plate that lies under the patient thereby preventing movement.

University of Zurich^{™™}

HIRSLANDE

PATIENT IMMOBILISATION

Fixations for special treatment techniques:

- Special techniques, such as stereotactic radiosurgery, require such high precision that conventional immobilization techniques are inadequate.
- In radiosurgery, a stereotactic frame is attached to the patient's skull by means of screws and is used for target localization, patient setup, and patient immobilization during the entire treatment procedure.

University of Zurich^{™™}

HIRSLANDEN

Patient data aquisition

First step in the TPS process. It is required for three different purposes:

- 1. To assess the position and extent of the target volume in relation to the other anatomical structures, particularly the organs at risk;
- 2. To acquire the data required for accurate computation of the dose distribution (shape and composition of the body);
- 3. To acquire the information necessary for the acurate set up of the patient (landmarks, reference structures, ...);

PATIENT DATA ACQUISITION: COMPUTER TOMOGRAPHY

Enormous technical breakthrough:

From 2-dim projections CT computes a property of the patient at every point within the the 3D space (resolution < 1 mm)

Measured property:

Linear x-ray absorption coefficient of the tissue relative to that of water (expressed in Hounsfield units)

University of

Zurich

HIRSLANDEN

COMPUTER TOMOGRAPHY FOR TREATMENT PLANNING

Definition of targets and OARs

Basis for dose calculation
 Tissue heterogeneities are considered quantitatively.

 <u>Problem:</u> CT numbers measured at kV energies, patient treated at MV energies!

University of

Zurich[∞]

HIRSLANDEN

FMH/SGSMP Residents physics course

HIRSLANDEN

TARGET DEFINITION: Gross tumor volume

Radiotherapy is a local treatment (which is complementary to systemic treatments)

Therefore it is an essential part of the TP-process to:(a) Define the tumor(b) Define organs at risk (OAR)

RECOMMENDATIONS BY THE ICRU

- International Commission on Radiation Units and Measurements
- ICRU reports provide guidance on prescribing, recording and reporting

University of

Zurich[™]

HIRSLANDEN

TUMOR RELATED TERMS

 Gross Tumour Volume (GTV) = clinically demonstrated tumour
 Clinical Target Volume (CTV) = GTV + extension for microscopic malignant disease

University of Zurich^{12H} HIRSLANDEN

TUMOR RELATED TERMS

Planning Target Volume (PTV) = volume planned to be treated = CTV + margin for set-up uncertainties and potential of organ movement

University of Zurich^{VZH} HIRSLANDEN

TUMOR RELATED TERMS

Treated Volume = volume that receives dose considered adequate for clinical objective Irradiated volume = dose considered not negligible for normal tissues

University of Zurich^{™™}

DEFINITIONS FROM ICRU 62

The concept of margins was expanded on by ICRU report 62

- Internal margin

 due to organ
 motion
- Set-up margin

The two are often combined as independent uncertainties

University of

Zurich[™]

NORMAL TISSUE RELATED TERMS

University of Zurich^{™™}

HIRSLANDEN

University of Zurich^{™™}

FMH/SGSMP Residents physics course

INTRODUCTION

Application of one treatment beam to a patient:

- Proximal dose is higher than tumor dose
- Beam exits through the eye

Hopeless way of treating a tumor

University of Zurich^{uz∗}

INTRODUCTION

Solution:

HIRSLANDEN

University of Zurich[™]

- Tumor cannot be treated using ONE single photon beam
- Use multiple cross-firing beams that concentrate dose within the target
- A treatment plan is the set of cross-firing beams and their weights

REQUIREMENTS ON THE OVERALL TREATMENT

The clinician must specify the:

- Fractionation scheme
- Prescription dose

.

HIRSLANDEN

	Physician's Intent			
Prescription ID	1.1			
Predecessor ID				
Status	Reviewed			
Patient Orientation				
Volume (Site)	Breast, Left			
Treatment Type	3D-Planung			
Energy Mode				
Depth				
Prescribed %				
Prescribed Dose / Fraction [Gy]	2.000			
Planned Dose / Fraction [Gy]				
Planned No. Fractions	30			
Fractions per Week	5			
Fractions per Day	1			
Delivered Dose to Date [Gy]	+			
Delivered No. Fractions to Date				
Remaining Dose [Gy]	•			
Remaining No. Fractions	\mathbf{k}			
Planned Total Dose [Gy] =	60.000			
Note	1.Serie bis 50 Gy, dann Boost bis 60 Gy			
Entered By	kati			
Entered Date	28.01.2008 11:24:28			
Reviewed By	kschneider			
Reviewed Date	28.01.2008 15:09:58			
Create Plan	Create Plan			
Treat Approved By				
Treat Approved Date	2 K			

University of Zurich[™]

REQUIREMENTS REGARDING THE TUMOR

Tumor dose is prescribed to the PTV:

- Point-Dose prescription
- Dose homogeneity

ICRU recommendations: 95% < *Dose_{pres}* < 107%

Dose profile is Gaussian shaped:

University of Zurich^{™™}

FMH/SGSMP Residents physics course

Prescribing dose in sterotactic RT

Conformity and prescription depends:

- machine
- filters used
- size of MLC/collimators
- SSD

University of

Zurich[™]

Isodose Prescription:

 $50\% < Dose_{pres} < 90\%$

Dose evaluation in sterotactic RT

Course ID: 4	Plan I	ID: 411_Lung_Re_D	Target Volume ID:	41_PTV_UL_R v			
pproval Status: Treatme	entApproved	Modification by: radonk\jb	Modification Date/Time:	16.08.2024 16:56:13			
lan Summary		Evaluation by: Uwe Schneid	er Evaluation Date/Time:	30.09.2024 12:20:43			
Course ID		Plan ID	Plan Type	Original Target Volume ID	Presc. %	Dose / Fraction	Number of Fracti
4			External Beam	41_PTV_UL_R	70.00 %	10.00 Gy	5
an Details Target Volume ID			41 PTV UL R		Target Volume ccm:		7.55 ccm
Prescription Percentage:			70.00 %		larget Volume ccm:		7.55 ccm
Target Min Dose:			86.34 % 43.17 Gy				
V100% / PTV V100%: NCI:			1.22 1.27		Target 99% Coverage MGI:		95.50 % 5.76
PTV V100% PD:			96.55 %				5.70
Lung-GTV V20:			1.29 %	L	unge Auswertung Max Dose 2 cm:		24.31 Gy
Bermerkungen:			129 76		Max Dose 2 cm.		24.51 0y
Prescription Isodose von PTV V100%PD >= 95%, E V100%/PTVV100% Target NCI optimal < 1.2, zwinge	60% bis 90%) at 99% of PTV >: : <= 1.2, Tolerance end < 1.5 arget <= 7, Toleran	Pläne für Lunge Zielvolumina, mit V = 90% e < 1.25, Minor Deviation 1.25 - 1.4 nce <= 9, Minor Deviation 9 - 11	olumina = 7.55, ccm				
Max dose > 2 cm < 35.8	Gy						

University of Zurich[™] HIRSLANDEN -

Dose evaluation in sterotactic RT

Application of the LQ-model is questionable:

Radiotherapie Hirslanden

HIRSLANDEN

University of

Zurich

Eigentum von: Radiotherapie Hirslanden AG, 5001 Aarau

RL.34.001

Tabelle 1. Dosisgrenzwerte für gesundes Gewebe und Organe

0

Organ / Gewerbe	5 Fraktionen		3 Fraktionen		1 Fraktion			Endpoint >= Grade 3	
	Optimal	Mandatory	Optimal	Mandatory	Optimal	Mandatory	Kommentare und Bemerkungen	Complication if not commented differently / comments	Reference
Hirnstamm	D _{0.} 035cm ³ < 23Gy	D0.035cm ³ < 31Gy D0.5cm ³ < 23Gy	D0.035cm ³ < 18Gy	D0.035cm ³ < 23.1Gy D0.5cm ³ < 15.9Gy	D0.1cm ³ < 10Gy	D0.035cm ³ < 15Gy D0.5cm ³ < 10Gy		Grade 3+ cranial neuropathy	UK SABR [15], Timmer. 2022 [13]
						Dmax < 12.5Gy	risk rate <5%	Grade 3+ cranial neuropathy	Mayo et al. [12]
Gehirn zus. mit GTV		V29Gy < 20cm ³		V23Gy < 20cm ³		V14Gy < 20cm ³	Prior whole brain RT appears to not markedly increase risks in most reports (with the exception of brainstem). However, repeat SRS/fSRS to the same area has been associated with markedly increased risks. [4]	3.4% risk of Grade 3 Toxicity (Necrosis)	HyTEC Brain 2020 [4]
						V14Gy < 10cm ³		0.8% risk of Grade 3 Toxicity (Necrosis)	
						V14Gy < 5cm ³		0.4% risk of Grade 3 Toxicity (Necrosis)	
						V12Gy < 5cm ³		10% risk of radionecrosis	
						V12Gy < 10cm ³		15% risk of radionecrosis	
		V24Gy < 20cm ³		V20Gy < 20cm ³				<10% risk of any necrosis or edema, and <4% risk of radionecrosis requiring resection	
		V24Gy < 30cm ³	•	V20Gy < 30cm ³	-			<20% risk of any necrosis or edema, and <4% risk of radionecrosis requiring resection	
Sehbahnen (Optic tract) und Chiasma	D0.035cm ³ < 22.5Gy	D0.035cm ³ < 25Gy D0.2cm ³ < 23Gy	D0.035cm ³ < 15Gy	D0.035cm ³ < 20Gy D0.2cm ³ < 15.3Gy	D0.035cm ³ < 8Gy	D0.035cm ³ < 10Gy D0.2cm ³ < 8Gy	Prior RT exposure of the optic pathway (either whole brain RT or SRS/fSRS) appears to markedly increase risks [6]	<1% risk of Grade 3+ optic neuropathy, Grade 3+ optic neuritis	UK SABR [15], HyTEC Optic Pathways 2017 [6], AAPM [1], Timmer. 2022 [13]
Orbita					D0.1cm ³ < 8Gy			Retinopathy	UK SABR [15]
Retina		Dmax < 5Gy		Dmax < 5Gy		Dmax < 5Gy		Retinopathy	Grimm et al [5]

Q:\RTH EAST\Richtlinien

Seite 5 von 10

FMH/SGSMP Residents physics course

REQUIREMENTS REGARDING THE NORMAL TISSUES (OAR)

Requirements on OARs are stated as constraints:

- Constraints on dose and volume: *"no more than 1/3 of the kidney may receive more than 60 Gy"*
- Biological constraints:
 "the normal tissue complication probability (NTCP) for pneumonitis of the lung should not exceed 1 %"
- Constraints on dose fraction:
 "the maximum dose per fraction delivered to the optic nerve may not exceed 1.5 Gy"

University of

Zurich^{uz}

HIRSLANDEN

REQUIREMENTS REGARDING THE NORMAL TISSUES (OAR)

Radiation pneumonitis as a function of mean lung dose

University of Zurich[™]

.

HIRSLANDEN

FMH/SGSMP Residents physics course

TRADEOFFS

Usually no treatment approach can meet all planning aims.

This will result in tradeoffs amongst target volume and normal tissue aims.

Example:

- treatment of the total
 PTV up to 70 Gy
- sparing of parotis (mean 26 Gy)

University of Zurich^{∞™}

One cannot discuss the design of a treatment plan until having discussed the tools for inspecting one.

The dose distribution includes:

- The dose from a plan in all 3D-directions
- Anatomical information from one or more imaging studies
- Anatomical information from structure delineation

..... and including variations of these data in time

University of

Zurich

HIRSLANDE

2D DOSE DISTRIBUTIONS

Dose and anatomy are superimposed:

- Anatomic information is represented by image intensity
- Overlay of the outlines of the delineated structures
- Dose display as isodoses (lines of constant dose) or color wash (dose is related to color)

University of

Zurich^{uz}

HIRSLANDEN

FMH/SGSMP Residents physics course

1D DOSE DISTRIBUTIONS

Dose-Volume histogram:

Frequency distribution of dose within a VOI

Attention: spatial information of dose is lost

University of Zurich[™]

We have been taken care of:

- Imaging studies
- Volumes of interest
- We know how a single photon beam is constructed
- We know how to display dose distributions

..... Let's start

University of

Zurich

HIRSLANDEN

APPROACHES OF TREATMENT PLANNING

Manual planning:

University of

Zurich

HIRSLANDEN

- Plan is iteratively improved
- Review of a large number of computed parameters ("expert inspection")
- Subjective process

Computer-driven planning:

- Decision about the quality of a plan is made by the computer
- Usually used in intensity-modulated radiotherapy

PLANNING BY HAND

Partial list of variables to optimize plan:

- type of therapy
- type of radiation
- the location of the patient the tumor and OARs
- the number of beams
- the angulation and aiming point of each beam
- the shape of each beam
- the weight and intensity profile of each beam

The choice of theses variables is the heart of the planning process

University of

Zurich

HIRSLANDE

PLANNING BY HAND

On what is the choice of plan variables based on?

- Plans used previously for similar cases
- Rules of thumb as how to set combinations of plan parameter
- Fast calculation engine to calculate interactively the dose distribution
- Display of that dose distribution
- Calculation of dose statistics
- Iteration of the process to arrive at the best plan
- EXPERIENCE

University of

Zurich[∞]

HIRSLANDE

University of Zurich[™] **PLANNING BY HAND** Flow chart for manual planning: Specify the goals Choose the initial and constraints values for all the (the planning aims) variables (starting values) Calculate the resulting dose distribution Choose new values for the variables Are the goals yes no and constraints end optimally achieved?

FMH/SGSMP Residents physics course

	advantages	disadvantages
photons	 widely available good skin sparing 	 higher entrance dose than tumor dose high dose through patient up to exit surface
electrons	 finite penetration, thus sparing tissues distal to the target volume very slight skin sparing 	 broad penumbra due to scattering only suitable for quite shallow targets due to shallow fall-off of the distal dose at higher energies
protons	 virtually no dose distal to the target volume somewhat reduced entrance dose proximal to the target 	 management of inhomogeneities is not trivial penumbra becomes substantial at large depth no skin sparing limited availability

University of Zurich^{uz#} HIRSLANDEN

CHOICE OF BEAM DIRECTION

Useful approach for direction selection: Beams-Eye-View (BEV):

- Perspective view of the patient's delineated anatomy as seen from the viewpoint of the radiation source
- Change in beam direction changes display
- Shows the spatial relationship between target and the delineated anatomy

University of Zurich[™]

HIRSLANDEN

FMH/SGSMP Residents physics course

CHOICE OF BEAM DIRECTION

- Frequently the geometry of the target and the OARs will suggest a particular approach
- Not all beams can avoid all OARs; particular OARs are included in one or more beams: dose < constraints
- Linacs rotate around a central point: *isocenter*
- beam lies in a plane perpendicular to the axis of the gantry's rotation

University of Zurich[™] HIRSLANDEN

CHOICE OF BEAM DIRECTION: NON-COPLANAR BEAMS

- Patient couch can rotate around the isocenter
- Is rarely used for geometrical reasons (patient is a "cylinder")
- Mostly used in head and neck treatments

University of Zurich^{™™}

DESIGN OF FIELD SHAPE

Goal:

HIRSLANDEN

University of 📋

Zurich[∞]

- Cover the entire CTV
- Do this with adequate margins (PTV) to take care of patient and organ motion, setup errors and penumbra
- Avoid OARs or minimize volume of OARs that is covered by the beam

Use Beams-Eye-View (BEV):

- Setting the collimator
- Setting the jaws (size of the rectangular field)
- Design of blocks or MLC-settings

FMH/SGSMP Residents physics course

NUMBER OF BEAMS

Generally the choice of number of beams depends on the patient's individual geometry!

- Arc therapy: rotating the beam around the patient (Dynamic Arc)
- Fixed beams:
 - Rarely use one beam, except for superficial tumors
 - Two parallel-opposed beams give a high dose outside the target volume
 - Typically between 3 and 7 beams are chosen

University of Zurich^{™™}

Not all beams need to be equally weighted = need to deliver the same dose to the PTV

How is the weighting decided?

- Experience
- Trial and error
- expert judgement
- Rules of thumb

University of Zurich^{uz∗}

CENTRAL TENET OF TREATMENT PLANNING

Planner are disposal engineers!

 The planner's job is to decide how to dispose of the dose that must inevitably be delivered outside the target volume

University of Zurich^{™™}

HIRSLANDEN

FMH/SGSMP Residents physics course

INTEGRAL DOSE

- Dose outside the target volume is a *toxic* substance
- Integral dose is a measure of how much toxic material is involved
- Integral dose is the measure of *total energy* deposited in the patient outside the target volume
- Integral dose does directly correspond to tissue damage

University of Zurich[™]

IMPACT OF TREATMENT APPROACHES ON INTEGRAL DOSE

Less integral dose is better for the patient

In many cases treatment technique has little impact on integral dose

University of Zurich^{uz∗}

FMH/SGSMP Residents physics course

Target shape and radiation modality have biggest impact on integral dose

A LOT TO A LITTLE OR A LITTLE TO A LOT?

Conformal 3D irradiation

Integral dose is approximately constant

University of Zurich^{™™}

FMH/SGSMP Residents physics course Treatment Planning Uwe Schneider

IMRT

High dose to a modest volume or Low dose to a larger volume ?

There is no definite answer to this question

Influence of tissue architecture!

FMH/SGSMP Residents physics course

THE INFLUENCE OF TISSUE ARCHITECTURE

serial architecture

University of Zurich[™]

HIRSLANDEN

an organ has a serial structure if the death of only one functional subunit (FSU) is sufficient to cause loss of function of the organ

parallel architecture

consists of FSUs each of which performs that the normal tissue is responsible for. Function is lost, when a critical number of FSUs is lost.

THE INFLUENCE OF TISSUE ARCHITECTURE

serial architecture

University of Zurich^{™™}

HIRSLANDEN

Maximum Dose to the organ is critical:

Strategy: A little to a lot

parallel architecture

Mean Dose to the organ is critical:

Strategy: A lot to a little

University of Zurich^{™™}

FMH/SGSMP Residents physics course

INTRODUCTION

So far we have implicitly assumed that each radiation field is near uniform over its cross section

- 20 years ago Cormack, Brahme and Pedroni had the idea to use non-uniform fields
- Using mathematical techniques, an irradiation scheme using non-uniform beams could be found, which limit dose to normal tissues while delivering the desired dose to the target

Motivation from CT reconstruction:

From the intensity reduction of x-rays traversing an object one can deduce the internal structure of the object.

University of

Zurich

INVERTING COMPUTER TOMOGRAPHY

Calculation of *intensities (pencil beam weights)* that pass through the object an deliver dose

- Highly non-uniform individual fields
- Problem: negative intensities

University of Zurich[™]

IMRT OF NASOPHARYNGEAL CANCER

University of Zurich^{™™}

FMH/SGSMP Residents physics course

ADVANTAGES OF IMRT

Creation of concave dose distributions:

 Sparing of selected normal tissues (conformal avoidance)

Delivery of non-uniform dose distributions to the target:

- Two different target volumes one nested inside the other (*integrated boost*)
- delivering additional dose to sub-regions of the target because they contain more resistant cells (dose painting)
- deliver a reduced dose to sub-regions of the target volume because a critical volume runs through it (dose painting)

University of

Zurich

DOSE PAINTING IN TARGET SUBREGIONS

Definition of target in the target by increased Gadolinium uptake in MRI

HIRSLANDEN

University of Zurich^{™™}

75.6 Gy dose cloud

94.5 Gy dose cloud

FMH/SGSMP Residents physics course

FMH/SGSMP Residents physics course

INVERSE PLANNING OF IMRT

Specify the desired dose distribution

University of Zurich[™]

> Calculate the treatment variables which would lead to the desired dose distribution

Straightforward scheme, but with problems:

- Negative intensities
- When negative intensities are set to zero there is no room for balancing conflicting goals (TCP – NTCP)

Inverse planning is not used in clinical practice

Forward planning of IMRT

FMH/SGSMP Residents physics course

FORWARD PLANNING OF IMRT

Two main aspects of planning IMRT:

- Establishing a method for computing a numerical score, expressing how well the goals were achieved
 (assign a numerical value to rank plans)
- Conducting a search through the space of treatment variables to locate the set of values of those variables that gives the best score (6000 variables with 10¹³ choices)

University of

Zurich

What is usually not included in the score

- Type of radiation
- Energy of radiation
- Number and direction of beams / Arc-angles
- Table rotation (IMRT is usual coplanar)

University of 🛛

Zurich[∞]

What is usually included in the score

Tumor response:

University of 🛛

Zurich

HIRSLANDEN

- The difference between the minimum (mean) target dose and the prescribed dose
- The dose exceeded by 95% of the target volume (cold spots)
- The dose exceeded in 5% of the target volume (hot spots)

Morbidity for each organ at risk:

- The difference between the maximum (mean) OAR dose and its constraint dose
- The difference between the volume of the OAR which receives more than a dose D and the corresponding volume constraint
- integral dose

Red: Target Green: Organ at risk

Objective Function: Mean squared deviation between actual and prescribed dose in the target

Constraint: Dose in organ at risk < 50 %, positive intensities

> Optimization Phase 1

University of Zurich^{™™}

Optimization Phase 1

University of Zurich^{uz∺}

FMH/SGSMP Residents physics course

Projection: Summation of the dose values along the beam direction

FMH/SGSMP Residents physics course

Scaling: Division by number of contributing dose elements and by number of beams

FMH/SGSMP Residents physics course

Evaluation Phase 1

Comparing prescribed and realized dose in the target volume. In this case there is no difference, therefore no correction necessary.

Same for the organ at risk: Here the difference is -0.5.

University of Zurich^{™™}

> FMH/SGSMP Residents physics course

Resulting correction matrix.

FMH/SGSMP Residents physics course

Optimization Phase 2

University of Zurich^{uz∺}

FMH/SGSMP Residents physics course

FMH/SGSMP Residents physics course

University of Zurich^{™™}

University of Zurich^{™™}

FMH/SGSMP Residents physics course

Repeat the steps of evaluation and optimization until an acceptable treatment plan is found.

3D-conformal (4 fields)

IMRT (9 fields)

University of Zurich^{™™}

FMH/SGSMP Residents physics course

Example chordoma

Target

University of Zurich[™]

Brainstem

FMH/SGSMP Residents physics course

IMRT: number of intensity levels

- About 5 intensity levels per beam are generally sufficient
- This means about 7-8 subfields per beam
- This means about 50-60 subfields in total

University of 🛛

Zurich

HIRSLANDEN

Calculated intensity map:

Practical realisation:

- Metal compensator
- Mutiple-static fields: step-and-shoot technique
- Dynamic multi leaf collimator: DMLC
- (Tomotherapy)
- (Swept pencil beams: Cyberknife etc.)

University of

Zurich

HIRSLANDEN

INTENSITY MODULATION: metal compensator

• Patient specific

University of Zurich^{™™}

• Beam specific

FMH/SGSMP Residents physics course

FMH/SGSMP Residents physics course

INTENSITY MODULATION: DMLC

University of Zurich[™]