

Tony Lomax :: Head of Medical Physics :: Paul Scherrer Institute Department of Physics :: ETH-Zurich

Special techniques II: Proton therapy

FMH physics training 2024

Overview

The principles of proton therapy The challenges of proton therapy The potential of proton therapy

Modulating protons in depth.

Pedroni et al 1995, Med. Phys. 22:37-53.

Treatment planning for protons

Treatment planning for protons

Incident field

Treatment planning for protons

Treatment planning for protons

Treatment planning for protons

Dose calculation

Optimised

dose

A multi-field plan (SFO/SFUD).

Note, each individual field is (more or less) homogenous across the target volume

An multi-field plan (MFO/IMPT)

Note, each individual field is highly in-homogenous (in dose) across the target volume (c.f. SFUD plans)

Example clinical IMPT plans delivered at PSI

Meningioma (3 fields)

Sacral Chordoma (2 fields)

Proton therapy at PSI

The power of the proton (1). Clinical results from PSI

Uveal melanomas >8000 Patients 5y Local control: 98%

> Ependymomas 50 Patients 5y Local control: 78%

Skull base tumours 222 Patients 7y Local control: 80%

> Sacral chordomas 36 Patients 5y Local control: 66%

Overview

1. The principles of proton therapy

2. The challenges of proton therapy

3. The potential of proton therapy

The effect of (unplanned) density heterogeneities on photons and protons

Photons...

... and protons.

The advantage of protons is that they stop 🙂

The disadvantage of protons is that we don't always know where... 😕

E.g. the effect of anatomical changes (1)

E.g. the effect of anatomical changes (2)

Nominal CT/plan

Repeated CT/plan

Nenoff et al 2019, Acta Oncologica

Towards Daily Adaptive Proton Therapy (DAPT)

Albertini et al 2019 BJR

PAUL SCHERRER INSTITUT

Daily Adaptive Proton Therapy (commissioning)

Nenoff et al 2021 PMB

Daily Adaptive Proton Therapy (clinical)

Chondrosarcoma

Meningioma

		Average duration [range] (min)
	Set-up and CT acquisition	2:50 [2:30-3:10]
	Registration	3:10 [2:10-4:50]
Online	Initial integrity checks	1:10 [0:50-1:40]
adaptive	Daily structure approval	2:30 [1:10-3:50]
steps	Daily Plan clinical evaluation & approval	2:20 [1:10-3:40]
	Plan QA (incl. check of secondary dose)	0:50 [0:30-1:00]
	Delivery	9:00 [7:00-11:10]
	Total	22:20 [17:30-25:50]

Delivery times

6:50 mins

DAPT fraction times: 22:20 (17:30-25:50) mins

Andreas Smolders, Eva Choulilitsa, Kasia Czerska, Francesca Albertini

Size and costs

Photon and proton gantries

PAUL SCHERRER INSTITUT

The return of gantry-less systems?

28 SEPTEMBER 2017 | VOL 549 NATURE 451

Size and costs

The return of gantry-less systems?

Overview

1. The principles of proton therapy

2. The challenges of proton therapy

3. The potential of proton therapy

The potential of proton therapy

- The advantage of protons is
 NOT in high dose
 conformation
- Their advantage is mainly in
 reducing the mid-to-low
 dose levels in comparison to photons

1. Reduced secondary cancer risk

A retrospective study from Stanford*

- >450000 RT patients identified from National Database (US)
- 9 tumour types, 35% 3DCRT, 65% IMRT, 1.3% Protons
- Median F/U 5.1 Yrs

PAUL SCHERRER INSTITUT

Reduced treatment induced lymphopenia

504 esophageal cancer patients treated with CRT Incidence of Grade 4 lymphopenia

Shiraishi et al Radiother Oncol 2017

3. Improved tolerance to treatments

A retrospective study from the University of Pennsylvania

- Comparison of 391 proton and 1092 photon patients treated with concurrent chemotherapy
- Endpoint number of unplanned hospitalizations due to adverse events

Nearly 3 times decrease in severe adverse events, despite a moderate (1.3x) reduction in integral dose... patients include those also treated with a tion of protons and photons.

egral dose ratio protons/photons ~0.7

Baumann et al 2020 JAMA Oncol. 6:237-246

4. Reduced toxicities (1)

A comparative study from MGH/Emory

• Median age: PRT 6.2 and XRT 8.3 years (p<0.01).

Co tot Me	1.5-6 times reduction of <i>frequent</i> (>19% incidence) radiation induced					ie,
Outcome		Modality	Events	Reduction	P-value	
Hypothyroidism		Protons	23%	2.8	<0.001	
		X-rays	65%			
Sex horm	hormone	Protons	3%	6.2	0.025	
def	ficiency	X-rays	19%	0.5	0.025	
Endocri replace therapy	docrine	Protons	55%	1.4	0.030	
	erapy	X-rays	78%			

Eaton et al Neuro. Oncol. 2016 18: 881-7

4. Reduced toxicities (2)

A comprehensive toxicity analysis for Nasopharynx

- University of Groningen, model based patient selection
 - 141 Nasopharynx patients (42 IMRT, 99 PT)

Photons (n=42) Foxicity endpoints Dysphagia Gr2+ 16% Dysge us la Gr 2+ 7% 46% Aucosal reactions Gr 24 34% Dry mouth Gr24 49% Dysphagia Gr3+ 8% Tube feeding 5% alivary duct inflammation Gr2+ 30% 7% ermatitis Gr2+ 42% 5% 38% ore mouth Gr2+ 24% 6% Aucosal reactions Gr 3 39% 39% 3% iore throat Gr2+ 3% 13% 2% 11% arvingeal voice Gr2+ 14% 1.3 late toxicities Aspiration Gr24 per patient Dry mouth Gr34 Laryngeal edema Gr2+ Late toxicity Acute toxicity

Total Toxicity Burden (grade 2+ and grade 3+)

Figure courtesy of Hans Langendijk

4. Reduced toxicities (2)

A comprehensive toxicity analysis for Nasopharynx

- University of Groningen, model based patient selection
 - 141 Nasopharynx patients (42 IMRT, 99 PT)

Total Toxicity Burden (grade 2+ and grade 3+)

5. Increased survival?

The recent phase 3 clinical trial from MD Anderson

- MD Anderson Phase III clinical trial
- 296 Oropharyngeal cancer treatments (136 IMRT, 160 PBS PT)

PAUL SCHERRER INSTITUT

Steven Frank, MD Anderson, PTCOG62

Summary

- The proton Bragg peak can substantially reduce mid-to-low doses delivered to normal tissues...
- ... but makes proton therapy more sensitive to anatomical changes and motion
- Nevertheless, studies indicate that reduced normal tissue could result in substantial reductions in secondary tumour incidence (factor 2-3)...
- ... and also to improved tolerance to radio-chemo therapy regimes
- In addition, substantial reductions in late normal tissue side effects are also being observed.
- Costs however remain high, making patient selection an important topic

Proton therapy in Switzerland

Any questions?

