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Thorium fission for nuclear power

Electrobreeding (transmutation of 23°Th —233U)
operates far from criticality (k ~ 0.98).

The molten lead moderator provides natural
convective cooling, huge thermal mass —
can’t melt down.

The fast neutron flux used for electrobreeding -
the reactor eats 1ts own long-lived waste.

A sealed GW core runs 7 years without access
There are enough known reserves of thorium to

power the Earth’s energy economy for 1000 yrs.



The electrobreeding concept:
1 GeV protons—fast neutrons

*First proposed by E.O. Lawrence (1948),

later by C. Rubbia (1995).
Fatal flaws: accelerator power, neutronics, reliability



Input & Output for Thorium Cycle

: Generator
@ Turbine
. g
Intermediate - 5
w
X S| Power Generati
Accelerator Complex bt - (m
Pump |® [ '
| m T o
Amplifier _|J &l
i -
Fuel Discharge Fuel Loading
* (27.61) <—
————3| Reprocessi Actinides ‘
eprocessing inides thorium mine
(Partition) 2470 »  Fuel fabrication
Spent fuel
_ > v
Fission Fragments Waste Packaging | ———
Reprocessing Complex (291 ™ (vitrification)
(every 5 years)




Fast neutrons are produced by
spallation of ~1 GeV protons on Pb

e Produces fast neutrons.

* Neutrons degrade 1n very small energy steps in
succeeding collisions with Pb nuclei.

* Molten lead serves as spallation target, moderator,
and medium for convective heat exchange.
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Problem: We need a proton driver capable of
~800 GeV energy, 15 MW power, ~50% efficiency!

* That 1s a very difficult design challenge for
either 1sochronous cyclotrons or linacs —
space charge limits 1n injectors and
acceleration.

» Most difficult — the accelerator must be a
simple, reliable system that can be operated
by a modest crew with long MTBF!



Design a conservative
accelerator, and replicate It:

* Three-stage accelerator system (2.5 mA)
0.1 > 5MeV RF quadrupole,
5 — 150 MeV sector cyclotron,
150 — 800 MeV 1sochronous cyclotron (IC)
* Assemble a stack of seven flux-coupled ICs
Flux linkage

Independent RF, injection, extraction, vacuum,
transport

 Reliability through redundancy
if one beam goes down, the reactor still operates.



An i1sochronous cyclotron uses sector magnets with poles shaped
so that revolution frequency is constant from injection (70 MeV)
to extraction (800 MeV)

sector
mognets



Combine the high-energy and the superconducting

1sochronous cyclotron of PSI: magnet design of Riken:
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Need low field, high RF to make efficient
injection/extraction (@ high power
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/-stack Isochronous cyclotron
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Layout 1njection, extraction similar to PSI
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Each pole has 7 apertures, trims for
Isochronism and mid-plane symmetry

Flux plate = NbTi
superconducting coil,
contoured steel plate
10 flux plates,

Top/bottom sacrificial gaps

R =2 — 5m, 10 cm aperture — cold bore vacuum



Best choice of proton energy ~800 MeV
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Control horizontal, vertical betatron tunes:
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* Need ~700 kV/gap, 4 gaps for good turn/turn
separation at injection, extraction

* Need compact structure: 50 cm IC separation

* Dielectric-loaded superconducting stubline
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Problem: Fission products shadow neutrons

As fission proceeds, fission products absorb neutrons
— neutron gain varies strongly within core and through fuel burnup.

Single coaxial drive beam (Rubbia):
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solution: arrange 7 proton drive beams
In a hex array of fuel assemblies.

Distribute proton drive — Reduce variation k(r)

Sweep each beam along depth of beam tube —
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Better control, more efficient consumption of fuel.



Model spallation source,
neutronics In core

Spallation' Target
Region

Slice through one sextant of the core



Neutron spectrum in Spallation
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Optimize core geometry
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Power distribution In one sextant




Power and Criticality through
Core Lifetime
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The 7-beam IC-driven thorium cycle operates as a sealed core for 7 years
— no re-shuffle of fuel pins, better control for non-proliferation.
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Isotope inventory through life cycle
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Very small inventories of waste isotopes (€.9. **Am),
very little bomb-capable isotopes (?>°U, 23%Pu)



What happens if we lose one drive beam?

The transmutation sequence has a time delay:
e 232Th + n— 233Th

233Th— 233Pg + f3 (22 minutes)
¢ 28pa 23y + (27 days!)

« So if we lose a drive beam, the surrounding fuel builds up an anomalous
inventory of 233U as the 233Pa decays but there is insufficient neutron flux to

stimulate fission. —e&—— normal operation - --a--- failure at startup
« Ak = +.02 due to local 233U spike — - — - —failure at t=4 yr
« Kk returns to normal when beam restored. 1-006
« Bottom line: Must design for k ~ 0.97 0.996 - maxk ;
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Convective heat transport
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Heat transport simulation

Axial temperatures inside the core
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Why do long-lived waste isotopes
accumulate in a thermal reactor?

neutron capture

[ decay

The fission products populate the
center of the table of 1sotopes.

Most such 1sotopes can capture thermal
neutrons (1) and also undergo either
beta decay (—) or inverse beta decay
(<), so each nuclide diffuses among
many values (Z,A).

But there are a few bad guy isotopes
with beta decay 2 life ~1000 y, and no
ability to capture thermal neutrons.
They are sticking points — the diffusing
nuclides land there and cannot escape!



Adiabatic moderation of fast neutrons —
ADTC reactor eats its own long-lived waste.

Narrow energy steps assure that each neutron tickles all the narrow
resonances of actinides, transuranics. No sticking points!
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So where 1s thorium, how much 1s
there for the world’s needs?

@ Canada

®
Australia

@
South Africa

Australia: 300,000 tons e S Nk Pt e e
India: 290,000 tons plenty more on the moon!
Norway: 170,000 tons

Us: 160.000 tons  World energy demand:
Canada: 100,000 tons  ~ 1,000 ton/year of thorium

World supply 1,200,000 tons



Conclusions

New flux-coupled IC and cavity technologies and new neutronics
make 1t possible to burn desert sand to provide man’s energy needs
for a thousand years.

We would like to collaborate with you in developing the design...



Main parameters of the core

Overall core dimensions

Radmws 1.5m
height 1.5m
Fuel bundles
Fuel pin
composition 90%Th™>*, 10%U">"
radius 0.35 cm
cladding thickness 0.055 cm
Bundle size (flat to flat) 18 cm
Inner fuel region
number of bundles 6x20
pms per bundle 271
Outer fuel region
number of bundles 6x14
pms per bundle 331
Starting fuel mventory:
Fresh ***Th 21 tons
2 tons

Recycled >3y



