

Introduction to Session: Treatment planning in ocular proton therapy

Linda Mortimer, PhD 26th March 2024

linda.mortimer2@nhs.net

Second International PTCOG Ocular Proton Therapy Symposium 2024

The Clatterbridge Cancer Centre NHS Foundation Trust

Acknowledgements

Kees H. Spruijt, HollandPTC

Mario Ciocca, Fondazione CNAO (Pavia, Italy)

Jan Swakon & Tomasz Horwacik, CCB / IFJ

Jens Heufelder, HZB/Charité

Jan Hrbacek, CPT PSI

Andrzej Kacperek, University College London, UK

The Clatterbridge Cancer Centre NHS Foundation Trust

Scope

- 1. Elements of an ocular treatment plan
- 2. Main goals of ocular treatment planning
- 3. Overview & comparison of (dedicated) ocular Treatment Planning Systems (TPS)
- 4. Planning workflow: traditional & modified (with 3D image data)
- 5. Choice of TPS: past and present survey results
- 6. What might the future hold for treatment planning in OPT?

Fundamental elements of an ocular treatment plan

terbridge er Centre

Eye model: geometric, patient-specific scaling

Tumour volume: delineation guided by clinical data

Clips (markers): tumour delineation & precise set-up

Immobilisation: mask, fixation light

Wedges: reduce modulation, entrance / ON dose

Torsion: model of eye twist (neutral gaze reference)

Lid tissue: account for if in the proton field

Margins: ~2.5mm universally adopted (range 2 - 3mm)

Main goals of ocular treatment planning

Select **best gaze angle** (optimise OAR doses)

Define **aperture shape** (BEV)

Determine proton (particle) **range** (energy) & range **modulation** Generate **clip projections (**orthogonal views), relative to aperture & cross-wires

Overview of dedicated Ocular TPS

EYEPLAN	 ~1975, first dedicated system at MGH¹, collaborative development (PSI then CCC) 	Planning based on a geometric eye model
EOPP <	 ~2003, Eclipse Ocular Proton Planning (Varian Medical Systems) 	All support fundus image registration except EOPP
OCTOPUS	 ~2005, developed by German Cancer Research Centre; use restricted to HZB/Charité² 	3D imaging (eye model refinement, clip positions, target definition)
RayOcular	 RayStation Ocular Module (first clinical use 2021 at WPE)³ 	Pencil Beam Algorithm: improved accuracy (wedges)
C	¹ Goitei ² Doble ³ Wulff	n M & Miller T, Med. Phys. 1983; 10(3): 275-283 r B & Bendl R, Phys. Med. Biol. 2002; 47: 593-613 J, Koska B, Heufelder J et al. Med Phys. 2023;50: 365-379

Comparison of dedicated ocular TPS

TPS	Register Fundus image?	Register CT/MR?	Dose calculation	Integrated x- ray image acquisition	Eyelid model or skin plane only?	Ongoing support?
EyePlan 3.07	Yes	No	Simplistic	Yes	Yes	No
EOPP	No*	No	Simplistic	No	Skin plane	No
Octopus	Yes	Yes	Simplistic	No	Yes	No
RayOcular	Yes	Yes	PBA	No	Skin plane	Yes

EOPP - Eclipse Ocular Proton Planning; Simplistic Dose Calculation; utilise measured profiles, lateral & distal penumbrae PBA – Pencil Beam Algorithm

* Adaptation can enable this

Traditional workflow, e.g. using EYEPLAN / EOPP

Modified workflow using RayOcular / OCTOPUS

NHS terbridge

er Centre

Choice of TPS: past & present survey results

Survey data 2015⁴

TPS Centres (%) Total 10 EyePlan 7 (70%) EOPP 1 (10%) EOPP & EyePlan 1 (10%) Octopus 1 (10%)

⁴Hrbacek et al. Int J Radiat Oncol Biol Phys. 2016; 95(1): 336-343

> Dedicated Ocular TPS General Purpose TPS

> > Total

Survey data 2022-24

	TPS	Centres (%) Total 19
	EyePlan	7 (37%)
	EOPP	4 (21%)
	Octopus	1 (5%)
	RayOcular	1 (5%)
-		
	Eclipse (GPM)	2
	RayStation (GPM) & XIO	1
	CMS Xio	1
	Siemens Syngo	1
	XiDose*	1

6 (32%)

Planned treatments in 2023

TPS	%
EyePlan	~ 67
EOPP	~ 9
Octopus	~ 11
RayOcular	~ 6
General Purpose Systems	~ 7

GPM: general-purpose PBS/DS/US module

*XiDose:

an in-house system supported by Elekta

What might the future hold?

- Shift to RayOcular (dedicated lines)?
- Increased use of General Purpose TPS (general purpose lines)?
- Combined use of RayOcular (anatomy / fundus registration) & GP TPS (dose calculation)?
- Increased experience in 3D image –based planning
- Recommendations / guidance for ocular proton planning?

Thank you for your attention Comments / other ideas welcome ③

Talks to follow.....

- Uncertainties in ocular proton therapy workflow (Martijn Hol)
- Exploring the suitability of **lateral margins** in PT for ocular malignancies (*Daniel Bjorkman*)
- **RayOcular evaluation** at Antoine Lacassagne center: a preclinical cases study (*Juliette Kobus*)
- **Pencil beam scanning** proton therapy for uveal melanoma: Modulated **multi-beam treatment** in a regular gantry room (*Haibo Lin*)
- Multi-modality image processing for treatment of eyes with light ion beams (*Mr Zhuangming Shen*)
- Configuration and calibration of **Monte Carlo based dose calculations** for eye treatments with light ion beams (*Rongcheng Han*)