

Extending the working life of a low-energy isochronous cyclotron for ocular proton therapy

Douglas Cyclotron Upgrades

Pete Corlett

Engineering manager

Background

- Built in 1984 by Scanditronix for fast neutron therapy 62MeV Adapted for treating eyes in 1989.
- Was also used for producing radioisotopes and for radiobiology research, but now completely dedicated to ocular proton beam therapy.
- Scanditronix fully supported the machine until around 1991, with "best efforts" provision for spare parts for some time afterwards.
- 2019 There was an expectation amongst staff & management that the service would close down imminently. Key staff gradually retired & not replaced.
- NHS had no plan for replacement of the service, and referring medics were worried.
- Alternative plan (to either terminating the service, or building a new machine) was put together.

The Plan

- Medium term plan (5 to 10 years after upgrade) to extend the life of the service to give NHS England some thinking time.
- Investment of approximately £2.5 million.
- Objectives :
 - Rejuvenate the team, particularly in engineering.
 - Modernise the most vulnerable parts of the accelerator.
 - Shore up spares holdings.
 - Where possible, bring the machine into compliance with modern standards

Team

- Engineering team recruited new staff, expanded the involvement of existing radiotherapy technicians.
- Physics personnel now rotate through cyclotron so more variation in work, personnel less trapped in silos
- Radiographers rotate through cyclotron so greater pool of people available.



Technical Cyclotron upgrades

- Cyclotron is an extremely complicated system.
- Can seem like an impossible task.
- How to we even go about upgrading?
- QUESTION:

Cyclotron upgrades

• Answer: One bite at a time

Cyclotron upgrades

- In Technical terms: Systems engineering & project management
 - Examination of cyclotron and split it into bite size subsystems.
 - Risk assessment of each subsystem
 - How intrinsically robust is it?
 - How often does it currently fail?
 - Do we hold spares / can we even buy a spare any more?
 - How long will the downtime be if it fails?
 - Is it unsafe at the moment?
 - Define what upgrades are possible
 - Prioritise that list based on risk / cost / benefit

Cyclotron upgrades

	NHS
The Clatter	
Cancer	Centre
NHS Founda	tion Trust

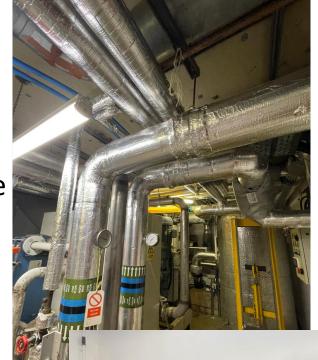
Upgrade	Priority
Control system replacement	1
DMC replacement	1
Vacuum PG2 diff pump upgrade	1
Harmonic coil supplies	1
Circular correction supplies	1
Beam QA Equipment	1
F-Cup electronics	1
Main magnet supply	2
Switch Magnet Power supply	2
RF water Pipework	2
Hydrogen flow control system	2
EM Channel power supply	2
RF grid Power supply x 2 (investigate remote control)	2
RF screen Supply x 2	2
Quad power supplies (follows on from Circular correctors)	2
XY steering supplies (follows on from CC & harmonic)	2
Vacuum instrumentation	2
Deflector 50kV supply (interim glassman supply)	2
Deflector 50kV supply (permanent spellman supply)	2
CCTV in vault	2
Vacuum leak detection	2
Air conditioning	3
X-ray imaging system	3
Pump room pipework	3
RF Anode power supply	3
Water temperature control	3

Smaller upgrades

- Upgrades we asses as being non-safety related.
- Managed according to a documented in-house ISO9000 process.
 - "Light touch"
 - Series of gateways
 - Justification/background
 - Conceptual design
 - Procurement
 - Detailed design
 - Implementation
 - Monitoring / sign off
 - Risk assessment at each stage
 - Sign off by a oversight committee,

Major upgrades

- Safety related their function directly affects patient safety, they are a medical device.
- Main Control system
- Dose Monitor Controller
- Being managed as full medical devices according to ISO13485 for externally delivered projects
 - All documentation provided as if certification was being sought.
- For DMC, going through the same gateways as per smaller upgrades, but also applying ISO14971 for management of risk.


Smaller upgrades completed so far

- Main vessel Vacuum Pump
- 7 x Circular correction power supplies
- 12 x Harmonic Power supplies
- Beam current measurement
- CCTV installation
- Network installation
- Deflector PSU

Smaller upgrades completed so far

- Switch Magnet PSU
- 7 x Quadrupole Power supplies
- 8 x Steering power supplies
- Vacuum leak detection
- Cooling water pipework upgrade
- Treatment room HVAC
- New beam QA devices

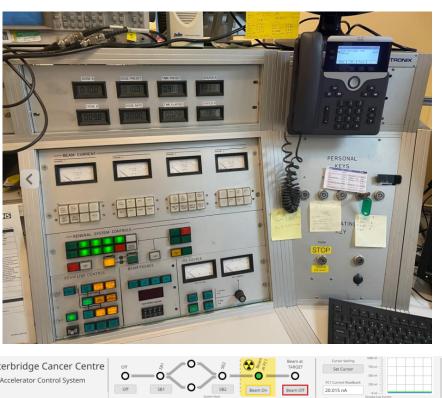
Minor Upgrades Milestones - allocated to individuals	Milestone								
	Priority	Responsible person	Start	Justification	Specification	Ordering	Detailed design	Installation	Finish / sign off
Vacuum PG2 diff pump upgrade	1	P.Corlett	01/07/2021	10/09/202	1 10/09/202	1 14/09/2021	22/10/2021	. 22/12/202	1 10/01/2022
Circular correction supplies	1	S.Elmer	13/09/2021	11/10/202	1 11/10/202	1 25/10/2021	29/11/2021	30/04/202	2 28/02/2022
Harmonic coil supplies	1	C.Davies	13/09/2021	11/10/202	1 11/10/202	1 01/11/2021	11/04/2022	31/05/202	2 14/03/2022
Beam QA Equipment	1	L.Mortimer	11/10/2021	29/11/202	1 29/11/202	1 16/05/2022	N/A	N/A	N/A
F-Cup electronics	1	M.Talbot	11/10/2021	01/11/202	1 01/11/202	1 29/11/2021	27/12/2021	30/04/202	2 20/04/2022
DMC replacement	1	P.Corlett, S.Elmer	14/03/2022	06/05/2022	<mark>2</mark> 31/12/202	05/05/2023	29/02/2024	24/06/202	4 31/6/2024
Switch Magnet Power supply	2	J.Lea	11/10/2021	01/11/202	1 01/11/202	1 29/11/2021	10/01/2022	18/04/202	2 13/01/2023
Main magnet supply	2	S.Elmer / P.Corlett	11/10/2021	01/11/202	1 01/11/202	1 20/06/2023	31/01/2024	18/03/202	2 31/03/2024
Hydrogen flow control system	2	S.Elmer / C.Davies	03/01/2022	24/01/2022	2 24/01/202	2 02/02/2022	31/03/2024	15/07/202	4 31/07/2024
RF water Pipework	2	P.Pryce	11/10/2021	01/11/202	1 01/11/202	1 29/11/2021	N/A	N/A	14/02/2022
EM Channel power supply	2	C.Davies, S.Elmer	03/01/2022	24/01/2022	2 24/01/202	2 07/10/2022	13/04/2023	11/12/202	3 31/12/2023
RF grid Power supply x 2 (investigate remote control)	2	P.Corlett, S.Elmer	07/02/2022	07/03/2022	2 07/03/202	2 28/09/2022	29/12/2023	29/02/202	4 08/03/2024
RF screen Supply x 2	2	P.Corlett, S.Elmer	07/02/2022	07/03/2022	2 07/03/202	2 28/09/2022	30/12/2023	29/02/202	4 08/03/2024
Quad power supplies (follows on from Circular correctors)	2	M.Smith	10/01/2022	31/01/2022	2 31/01/202	2 28/02/2022	28/03/2023	08/08/202	3 15/08/2023
XY steering supplies (follows on from CC & harmonic)	2	C.Davies, S.Elmer	18/04/2022	19/05/2022	2 19/05/202	2 23/05/2022	20/06/2023	13/10/202	3 17/10/2023
Vacuum instrumentation	2	J.Lea, P.Corlett	17/01/2022	14/02/2022	2 14/02/202	2 03/10/2022	31/03/2024	30/06/202	4 30/06/2024
Deflector 50kV supply (interim glassman supply)	2	P.Corlett	06/12/2021	24/01/202	2 24/01/202	2 14/02/2022	21/03/2022	30/05/202	2 06/06/2022
Deflector 50kV supply (permanent spellman supply)	2	P.Corlett	06/12/2021	24/01/2022	2 24/01/202	2 14/02/2022	22/03/2022	29/02/202	4 01/03/2024
CCTV in vault	2	M.Smith	11/10/2021	01/11/202	1 01/11/202	1 29/11/2021	13/12/2021	18/07/202	2 19/07/2022
Vacuum leak detection	2	P.corlett	01/04/2022	08/04/2022	2 08/04/202	2 18/08/2022	N/A	N/A	31/10/2023
Pump room pipework	3	Propcare							
Air conditioning	3								

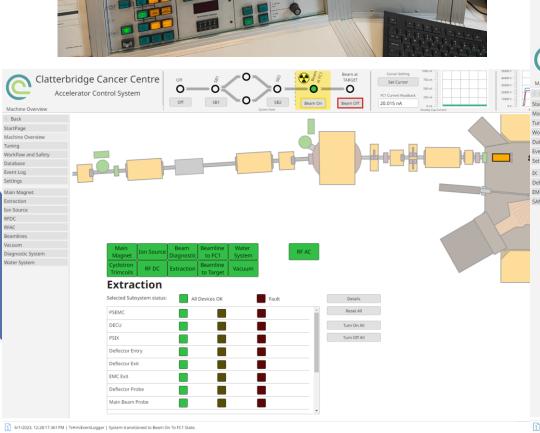
Dose Monitor Controller Upgrade

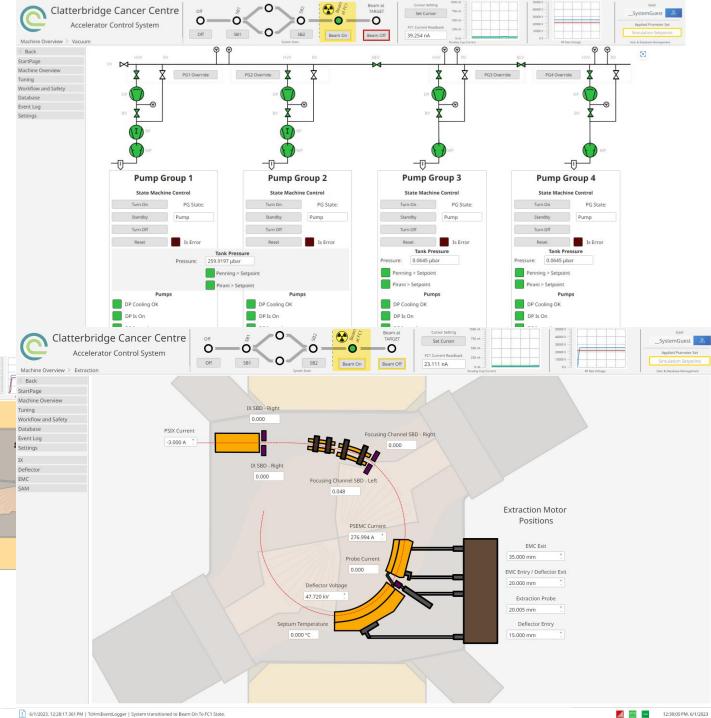
- System which terminates the proton beam when the prescribed dose is reached.
- Collaboration with Pyramid Technical Consultants
- Pyramid provide the ion chambers & dose control electrometers
- Clatterbridge provide the integration & risk management
- Cosylab providing software code review

Dose Monitor Controller

Cosylab control system upgrade


- Existing computer control system is a PDP11 and original as built in 84.
 - A minor miracle it still operates!
- New system based upon Beckhoff industrial automation platforms.
- New signal IO hardware
- Make use of data interfacing where possible
- Produced to ISO13485
- Documented as medical device





Conclusion & Future.....

- Cyclotron itself is largely untouched
- Extensive upgrades made to ancillary equipment & electronics
- Working according to appropriate quality management systems
- Once we do our planned upgrades, its not the end!
- Future work slower time
 - RF system work
 - Redesign circuit boards
 - Servo controlled:
 - beam steering
 - dose rate
- Thank you!

Thanks

Pete Corlett

Extra slides

Regulatory issues

- Our cyclotron pre-dates any standards on proton therapy.
- It is NOT CE marked or built to any specific standard.
- Our "licence" to treat patients is based on the provenance of the machine being safe for 40 years. Clatterbridge assume all risk involved.

- As a hospital, we have no route to get anything CE marked as a medical device.
 - All upgrades are "in house developments" and Clatterbridge assume full responsibility.
 - Its our responsibility to document everything to an appropriate level.
 - We have had our minor upgrade programme examined as part of a BSI audit.

