



Lea Caminada (PSI – University of Zurich), Angela Papa (PSI – University of Pisa), Klaus Kirch (PSI – ETH Zurich) :: Laboratory for Particle Physics :: NUM Division PSI

## **PSI** Particle Physics

Visit of the President of CERN Council at PSI, December 21, 2023



# **PSI Laboratory for Particle Physics**



- Pursue leading research in experimental and theoretical, accelerator-based particle physics at PSI and at CERN.
- Develop, apply and make available cutting-edge technologies.
- Organize and support user activities at CHRISP.
- Work together closely with CHIPP, universities and international collaborations.
- Train next generation of physicists and electronicians at
  PSI and at universities.
- Inform and educate the broader public.













- High-energy physics group in CMS
  - 16 CMS members (including senior scientists, postdocs, PhD students, technicians and emeriti)
  - Leading contributions to detector development, physics analysis and ORD
  - Holding key positions within collaboration: Trigger Coordinator (M. Missiroli), Common Analysis Tools Coordination (C. Lange), TEPX Upgrade Coordinator (W. Erdmann), Secretary of CMS Management Board (Q. Ingram)
- High-performance computing and emerging technologies
  - Tier3 computing centre at PSI and Tier2 computing centre at CSCS
- LTP theory group
  - Phenomenology of physics at the LHC (Higgs, SM, SUSY, Exotica)
  - Coordination within LHC Higgs cross section working group (M. Spira)









## PSI activities in CMS

- CH consortium (PSI, ETH,UZH) led design, construction, integration, commissioning of original and Phase-1 CMS pixel detector
  - Major parts built at Swiss institutes with components from local industry
- Key contributions to pixel detector operation, calibration, performance monitoring, local reconstruction, tracking and vertexing
- Active in physics analysis, in particular Standard Model, B and Higgs physics









## CMS at HL-LHC

- TEPX prototype disk
- PSI is responsible (together with UZH) for design and construction of extended pixel detector (TEPX) for CMS Phase-2
  - Module production and testing, mechanics, readout system, integration and installation
- Module production (about 1200 modules to be built at PSI, 60% of TEPX) will start next year
  - Close collaboration with other groups building modules for TBPX (INFN, ETH, E), TFPX (USA) and TEPX (D, E)
- Detector installation in 2028

#### TEPX module



Tracker Barrel Pixel -TBPX





Tracker Forward Pixel -TFPX 8 disks

Service Cylinder



## Detector R&D activities

- Development of readout electronics for fast silicon timing detectors (with time resolution < 30ps)
- For "CMS Phase-3" (future upgrade in LS4) → timing information in TEPX → 4D tracking at CMS
- Forming collaboration PSI/UZH/CERN for chip development in 28nm CMOS process
- Development of Depleted Monolithic Active Pixel Sensors (DMAPS) for applications in particle physics and beyond
  - Development of test structures and prototype chips in different processes
  - Partner organization in AIDAinnova WP5
  - Cooperation with ARCADIA
- Active part in forming CH collaboration towards research at FCC (CHEF)
- Participation in ECFA Detector R&D roadmap
  - DRD3 Solid-state detectors
  - DRD7 Electronics

#### 4D tracking at CMS



#### MOTIC (Monolithic timing chip 2021)





# The intensity frontier at PSI: $\pi$ , $\mu$ , UCN

Precision experiments with the lightest unstable particles of their kind



Swiss national laboratory with strong international collaborations

See recent Particle Physics at PSI, https://scipost.org/SciPostPhysProc.5.001



# Ring cyclotron

• at time of construction a new concept: separated sector ring cyclotron [H.Willax et al.]

• 8 magnets (280t, 1.6-2.1T),
 4 accelerating resonators
 (50MHz), 1 Flattop (150MHz),
 ∅ 15m

• losses at extraction  $\leq$  200W

reducing losses by increasing RF voltage was main upgrade path

[losses  $\propto$  (turn number)<sup>3</sup>, W.Joho]

- 590MeV protons at 80%c
- 2.4mA x 590MeV=1.4MW



# **Proton Irradiation Facility PIF**

Main functions:

- user-lab for studies of radiation effects
- realistic simulator of space radiation environment
- source of mono-energetic particles
- radiation qualification of space technologies
- calibration of detectors
- application oriented and user-friendly facility
- part of ESA "European Component Irradiation Facilities ECIF"

Main parameters:

- proton energy range: 6 230 MeV
- proton flux range:  $10^2 10^9 \text{ p/s/cm}^2$
- Gaussian-like profiles (FWHM 9 cm)
- options: focused (6mm) or flat beam profiles

Operation and User:

- ~120 test days/y with ~60 experiments/y
- ~150 visitors/y from about 40 institutions: research institutes, universities, aerospace and electronic industry from CH, EU, CHN and US
- main users: ESA and CERN







## Search for a neutron Electric Dipole Moment nEDM Collaboration @ PSI





## Future muon cLFV experiments at PSI

- Neutrinoless muon decays are one of the most sensitive probes for new physics
- $\mu \rightarrow e\gamma$  and  $\mu \rightarrow 3e$  only possible at DC, high-intensity machines, such as HIPA
- $\rightarrow$  New project (HIMB) for muon experiments with unique sensitivities





A. Baldini et al. (MEG Collaboration), Eur. Phys. J. C73 (2013) 2365

A. Baldini et al. (MEG Collaboration), Eur. Phys. J. C76 (2016) no. 8, 434

## The MEGII experiment at PSI

- The MEGII experiment aims at searching for  $\mu^+ \rightarrow e^+ \gamma$  with a sensitivity of ~ 6 10<sup>-14</sup>
- Best upper limit on the BR ( $\mu^+ \rightarrow e^+ \gamma$ ) set by the MEG experiment (4.2 10<sup>-13</sup> @90% C.L.)
- Five observables (E<sub>q</sub>, E<sub>e</sub>, t<sub>eq</sub>,  $\vartheta_{eq}$ ,  $\varphi_{eq}$ ) to identify  $\mu^+ \rightarrow e^+ \gamma$  events





### The WaveDAQ System

- Data acquisition system based on patented DRS4 chip with 5 GSPS/12 bit developed at PSI
- Novel custom crate design allows compact triggering and DAQ
- WaveDAQintegrates signal amplification, triggering, DAQ andbias voltage generation in a single system
- Boards used in MEG, FOOT (INFN Pisa), Beam profile monitorsand SwissFEL





### How is ongoing...Physics run 2023: completed

#### Very successful data taking period!





https://arxiv.org/pdf/2310.12614.pdf https://arxiv.org/pdf/2310.11902.pdf

### First MEGII results - data sample "Run2021" and MEG combination





### Mu3e: Latest news and currents status



- The Mu3e experiment aims to search for  $\mu^+ \rightarrow e^+ e^+ e^$ with a sensitivity of ~10<sup>-15</sup> (Phase I) up to down ~10<sup>-16</sup> (Phase II)
  - Previous upper limit BR( $\mu^+ \rightarrow e^+ e^- e^-$ )  $\leq 1 \ge 1 \ge 10^{-12}$ @90 C.L. by SINDRUM experiment)
- Detector concept validated during the Integration run 2021
- Full beam line commissioned during the beam time 2022 fine tuning and further studies ongoing during the beam time 2023 [new record of transported muons at the collimator]
- Very successful: TDR promised values matched!
  - 1.02e10<sup>8</sup> mu/s @2.4 mA (Mu3e magnet) [run2022]







### Mu3e: Latest news and currents status



- The Mu3e experiment aims to search for  $\mu^+ \rightarrow e^+ e^+ e^$ with a sensitivity of ~10<sup>-15</sup> (Phase I) up to down ~10<sup>-16</sup> (Phase II)
  - Previous upper limit BR( $\mu^+ \rightarrow e^+ e^- e^-$ )  $\leq 1 \times 10^{-12}$ @90 C.L. by SINDRUM experiment)
- Detector concept validated during the Integration run 2021
- Full beam line commissioned during the beam time 2022 fine tuning and further studies ongoing during the beam time 2023 [new record of transported muons at the collimator]
- Very successful: TDR promised values matched!
  - 1.02e10<sup>8</sup> mu/s @2.4 mA (Mu3e magnet) [run2022]





Time line phase I (exploiting current beamline intensity)

- Engineering run: 2024
- First physics run: 2025 2026

Phase II: It requires 10<sup>9</sup> mu/s -> HiMB

# IMPACT – Isotopes and Muon Production using Advanced Cyclotron and Target technologies

- 01/22 CDR published 🗸
- 07/22 Scientific Review 🗸
- 12/22 ETH Board: IMPACT for Swiss Roadmap of RIs 2023
- 2022-24 PSI funds pre-project
- 12/24 Swiss parliament decision about funding 2025-28
- Full implementation
- 08/28 start HIMB
- 08/30 start TATTOOS





## LTP – Strategy and Vision for 2026+

| Harvest physics results 2022-2028+                                                 | Future activities 2026+                                                                          | Future infrastructure<br>2026+                                                         |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| CMS<br>MEG II<br>Mu3e Phase I<br>n2EDM<br>CREMA, HyperMu<br>Mu-MASS (@LEM)<br>MUSE | CMS at HL-LHC<br>Mu3e Phase II<br>n2EDM++<br>muEDM I & II<br>PIONEER I & II<br>Mu – spec&gravity | HIMB (2029+)<br>muCool (2024+)<br>EZE UCN (2026+)<br>HL-LHC (2028+)<br>Pixel detectors |
| muX, QUARTET                                                                       |                                                                                                  | & other technology                                                                     |

Aim at leading efforts in high- and low-energy particle physics with discovery potential Synergies of experiment + theory + technology development & transfer + education Foster collaborations within LTP, NUM, PSI, ETH&UZH&more, CHIPP, &internationally