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MBI 

R. Akre, et al., PRST-AB 11, 030703 (2008)  
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MBI at LCLS 
  Bright coherent radiation incapacitates 

diagnostics 
Coherent radiation on OTR screens at 4 GeV 
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Gain Length Measurement 
  Instability may affect FEL performance 

  Laser heater suppresses instability 
  Use gain length as FEL metric 
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MBI at LCLS 
  Instability DOES affect FEL performance 

MBI suppresses 
FEL with no 
laser heater 

Parameters: 1.5Å, 250pC, 3kA, Compression factor = 90 

Gain Length vs. Laser Heater 
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MBI 

R. Akre, et al., PRST-AB 11, 030703 (2008)  
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MBI at LCLS 
  Uniform E-field:  
  QB curve has ~1% width 

rms width 0.83% 

λ=5 µm λ=1 µm 
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From M. Venturini 

3D vs. 1D 
  Transverse Models 

On-axis longitudinal field fluctuations 
Radial correlations 

 of longitudinal E-field 

1D model: 
Strong correlation 

3D vs. 1D model of shot noise 

High  
frequency 

3D model: 
Weak correlation 

€ 

k ≡ 2π /λ
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MBI 6D Model 
  Model Microbunching Instability (MBI) 
  Radiation from beam: 

Dispersion e- Space Charge 
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MBI 6D Model 
  Model Microbunching Instability (MBI) 
  Calculate bunching factor from shot noise: 

  Klimontovich density distribution 
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MBI 6D Model 
  Separate out space charge contribution: 
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MBI 6D Model 
  Our goal: Bunching factor squared :  

  From X(0), can find <b(k)2> 
  Split into incoherent and coherent terms: 
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MBI 6D Model 
  Split into coherent and incoherent terms: 

  Incoherent: 

  Coherent: 
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MBI 6D Model 
  Coherent terms: 

Large Small 
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MBI 6D Model 
  MBI term (Γ2):   

  Gaussian initial distribution, Ψ(X0) 
  Nasty, but can be solved 

Gaussian integral over transverse angles, Y 



18 18 

MBI 6D Model 
  For short impedance section in high 

frequency limit: 

  Compare to uniform E-field model: 
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MBI 6D Model 
  Any upshots from model? 
  LCLS predictions: 

  Weak (relatively) Lorentzian suppression 
  3D regime has no γ0 dependence 
  Can we observe either? 

No γ0 dependence
 Lorentzian Suppression
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MBI at LCLS 
  Any upshots from model? 
  LCLS predictions: 

  Weak (relatively) Lorentzian suppression 
  3D regime has no γ dependence 
  Can we observe either?  QB Curve 

Suppression  Width 

Gain  Height 
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Z. Huang 

MBI at LCLS 
  LCLS QB curve (2007): 

Gaussian fit to 
experiment 3D model 

(w/ T512) 
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Z. Huang 

MBI at LCLS 
  LCLS QB curve (2008): 

Gaussian fit to 
experiment 3D model 

(w/ T512) 
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Spectral Gain 
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Spectral Gain 
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Shot Noise Suppression 
  Amplification Summary: 

  6D model calculates MBI for arbitrary accelerator 
motion 

  No solid experimental confirmation 
  Will compare with Impact simulations soon 
  Further experiments? 
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Introduction 
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Shot Noise Suppression 
  Shot Noise suppression 

  Proposed by Gover and Litvinenko 
  Suppress MBI, improve seeding, …? 
  Ignore transverse coordinates (1D model) 
  Arbitrary interaction, h(ζ=z1-z2) 

Dispersion 
e- 

Interaction 
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Shot Noise Suppression 
  Shot Noise suppression 

Dispersion 
e- 

Interaction 

particle density 
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Shot Noise Suppression 
  Taking Fourier transform we find 

  And for imaginary FT{h} 

  Noise is suppressed!   
  For step function, FT{h} ~ A/k, noise 

suppressed at all freq: ϒ=n0R56Au 
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Shot Noise Suppression 
  Physical picture: why imaginary FT? 

E z 

density 

Space Charge 
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Shot Noise Suppression 
  Undulator Case: helical undulator 

With undulator strength, Au, periods, Nu, and resonant wavelength, λ0 
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Shot Noise Suppression 
  Undulator Case: FT of interaction 

High Frequency Limit: € 

m ≡ k /k0 , α ≡ 2πNu
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Shot Noise Suppression 
  Simulation illustrates undulator case 

  1D code with interaction and dispersion 

Initial Distribution Final Distribution 

Yu=1, Nu=1 
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Shot Noise Suppression 
  Simulation illustrates undulator case 
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Shot Noise Suppression 
  Need better approximation 
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Shot Noise Suppression 
  Simulation illustrates undulator case 
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Shot Noise Suppression 
  Simulation illustrates undulator case 
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Shot Noise Suppression 
  Check (1-Υ)2 scaling 
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Shot Noise Suppression 
  What is distribution at particle level? 

  take limit of no energy spread 

for step function:   n0A 
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Shot Noise Suppression 
  What does particle level look like? 

  Crystalline beam! 
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Shot Noise Suppression 
  Energy spread and modulation  

<Δη> 
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Shot Noise Suppression 
  Energy spread washes out suppression: 

  Decreasing R56, decrease λmin… 
  But increases energy spread 
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Shot Noise Suppression 
  Sets lower limit on suppression wavelength: 

Modulation can be 
smaller than 

energy spread 
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Shot Noise Suppression 
  Noise Suppression Summary: 

  Step function interactions suppress shot noise at 
wide bandwidths 

  In cold beam limit, produces crystalline beam 
  Experimental test? 

  NLCTA space charge case: 
  For 10m section, 100 MeV, 20 A, 1mm radius 
    2mm R56 to suppress shot noise 
  But need to study true 3D system first… 
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Thanks! 
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YAG 
Screen 

Bunching 
from FEL 
process 

All undulators 
remain inserted 

Gain Length Measurement 
  Instability may affect FEL performance 

  Laser heater suppresses instability 
  Use gain length as FEL metric 

FEL 

Bunching 
misaligned, 

smeared 

Full FEL 
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Shot Noise Suppression 
  Physical picture: why imaginary FT? 

E z 

density density 

Space Charge Undulator 
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 At high frequency (σ/λγ >> 1), longitudinal space charge 
(LSC) field has no γ dependence 

   LSC field proportional to electron volume density 

   impedance inversely proportional to transverse beam area (σ-2) 
   bunching dominated by smallest beam, not lowest energy  

σx 

γλ/2 

High frequency/Pancake beam Low frequency/Pencil beam 

Fat beam E-field independent of γλ Pencil beam E-field scales as γ-2 

Microbunching Gain Scaling 

γλ/2


Increase γ


γλ/2


Increase γ
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Gain Calculation 

  Drift space 3D gain calculation: 

(ε is normalized emittance, β is value at waist, L = 2m) 

 Nominal case: β = 1.2m 
 Widen waist to β = 5  gain decreases by factor of 7 
 Narrow waist to β = 1/3  gain increases by 80% 
 Suggests changing waist size should change results! 

Numerical factor gives β dependence 
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LCLS Experiments 

Dominates high-
frequency 
impedance 

Start of 
Dogleg 

Standard Lattice 
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Big Waist Matching 

Remove Waist 

  Settings to suppress microbunching 
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Small Waist Matching 
  Settings to amplify microbunching 

Smaller 
Waist to 
Increase 

Gain 

Messy 
transport 

suppresses 
bunching 


