

Projected Results Ron Gilman

Background / Assumptions Optimization Radius (J Bernauer's work) Ratios Summary

This work is supported by the National Science Foundation, grant PHY-2209348 to Rutgers University. The MUSE experiment is supported by the U.S. Department of Energy, the U.S. National Science Foundation, the Paul Scherrer Institute, and the US-Israel Binational Science Foundation.

- Projections are based on experience running 2022 2023, extrapolated out to 15x10⁹ events — took ~ 1x10⁹ in 2021 (no TCPV), 1x10⁹ in 2022, 3x10⁹ in 2023.
- Analyzed runs in each of the 6 momentum settings to determine yields per run, but yields depend on analysis techniques / cuts:
 - Tradeoffs between signal and background
 - Tradeoffs between statistical and systematic uncertainties
 - Detector analysis focussed on ensuring clean data sample, removing backgrounds — might be more recoverable events

- Projections will also depend on how we divide the beam time between the 6 momentum settings and full vs empty cell data
 - Results are not very sensitive to the division of time
 - Slightly different optimizations for different physics
 - radius
 - $\sigma_{ep}/\sigma_{\mu p}$ for lepton universality
 - two-photon exchange

Optimizing uncertainties

Look at cross section ratios for division of time between full and empty cells:

Generate pseudodata for

UTGERS

$$r(Q^2) = (\sigma_{\mu p} / \sigma_{ep})_{data} / (\sigma_{\mu p} / \sigma_{ep})_{theory}$$

- Fit with $r(Q^2) = c + sQ^2$.
- Plot uncertainties for c and s.

For division of time between momenta, generate pseudodata from various parameterizations, fit with various parameterizations, examine results.

General result: optimization has shallow minimum

RUTGERS Uncertainties of full-vs-empty cell time

Radius uncertainties

R(1, 1) / variable dipole model analysis

R(0, 2) /

fixed

dipole

model

analysis

What to take away from this analysis: ~ 15 % effect on the uncertainty from a wide range of choices of how we divide the time between momenta

6

Goal for uncertainty is 8 (10⁻³ fm).

- The ratio analysis suggests 70% 80% of time is spent on full cell. We typically run 60% — the final comparison to simulation will have overall lower S/N.
- Different fits lead to slightly different optimizations.
- A 10% change in statistical uncertainties is equivalent to a 20% change in amount of data taken, so it is important to try to get the division of time optimized.
- As we analyze more data, advance the analysis techniques towards those for the final data analysis, and choose exactly how we will fit the radius, we can better determine optimum.
- We will continue to revise our planned data taking to reflect our understanding of how to optimize uncertainties.

Radius uncertainties, bias

TABLE III: Uncertainty (σ) and bias (Δ) for three input models and a series of model selections for the

Input model

fits. Each model combination is fitted to a set of 10,000 variations of the input model. Uncertainty of 8 x 10^{-3} fm corresponds to ~ 5 sigma.

		input model						
Mod	el for	JCBP10		Arr07		Std. dipole		
G_E	G_M	$\sigma~(10^{-3}~{\rm fm})$	$\Delta~(10^{-3}~{ m fm})$	$\sigma~(10^{-3}~{\rm fm})$	$\Delta~(10^{-3}~{ m fm})$	$\sigma~(10^{-3}~{\rm fm})$	$\Delta~(10^{-3}~{ m fm})$	
R(1,1)	JCBP10	6.3	-2.1	5.9	2.2	6.2	8.6	
R(1,1)	std. dipole	6.3	-4	5.9	0.3	6.2	6.6	
R(1,1)	dipole	7.9	-0.1	7.3	8.6	7.4	8.2	
R(1,1)	linear \times std. dipole	8	0.3	7.4	9.1	7.6	8.4	
R(1,1)	R(1,1)	9	5.6	9	10.3	9.4	11	
dipole	dipole	3.8	-21	3.8	-3.7	7.1	3.4	
linear \times std. dipole	linear \times std. dipole	3.5	-25	3.4	-7.3	3.7	3.2	
R(0,1)	std. dipole	2.5	-12.6	2.5	22	2.6	20.6	
R(0,1)	dipole	4	-9.7	3.9	8.3	4.2	13	
R(0,1)	R(0,1)	4	-11.7	4	5.8	4.2	10.7	
R(0,2)	std. dipole	6.1	-4.2	6.1	-0.1	6.4	6.4	

From analysis report. But ...

UTGERS

Radius uncertainties, bias

TABLE III: Uncertainty (σ) and bias (Δ) for three input models and a series of model selections for the

fits. Each model combination is fitted to a set of 10,000 variations of the input model. Uncertainty of 8 (10⁻³ fm) corresponds to ~ 5 sigma.

			Input model					
Model for		JCBP10		Arr07		Std. dipole		
	G_E	G_M	$\sigma~(10^{-3}~{\rm fm})$	$\Delta~(10^{-3}~{ m fm})$	$\sigma~(10^{-3}~{\rm fm})$	$\Delta~(10^{-3}~{ m fm})$	$\sigma~(10^{-3}~{\rm fm})$	$\Delta~(10^{-3}~{ m fm})$
	R(1,1)	JCBP10	6.3	-2.1	5.9	2.2	6.2	8.6
	R(1,1)	std. dipole	6.3	-4	5.9	0.3	6.2	6.6
	R(1,1)	dipole	7.9	-0.1	7.3	8.6	7.4	8.2
	R(1,1)	linear \times std. dipole	8	0.3	7.4	9.1	7.6	8.4
	R(1,1)	R(1,1)	9	5.6	9	10.3	9.4	11
	dipole	dipole	3.8	-21	3.8	-3.7	7.1	3.4
lin	$ear \times std. dipole$	linear \times std. dipole	3.5	-25	3.4	-7.3	3.7	3.2
	R(0,1)	std. dipole	2.5	-12.6	2.5	22	2.6	20.6
	R(0,1)	dipole	4	-9.7	3.9	8.3	4.2	13
	R(0,1)	R(0,1)	4	-11.7	4	5.8	4.2	10.7
	R(0,2)	std. dipole	6.1	-4.2	6.1	-0.1	6.4	6.4
		-		-				

Expecting to use R(1,1) + pre-existing G_M fit.

RUTGERS

It is fair to use multiple existing fits to study model dependence.

Q² dependence examples

ITGERS

- We have been looking in more detail at the fitting technique:
 - Uncertainties are sensitive, but not very sensitive, to the division of time.
 - Uncertainties and bias depend on choice of models.
 - Different assumptions \rightarrow different optimization.
- More work needed on larger variety of fits, ensuring no pathologies.
- Best practice is to publish planned method before analysis of actual data we expect to do this during 2024.
- Complementary, independent technique: trade off fit uncertainties for theory uncertainties by comparison to Gil-Dominguez et al.

 Have also looked into cross section ratios - same statistical assumptions used for generating pseudodata as for radius determination already shown

 σ_{μ}/σ_{e}

 $\sigma_{\mu p}$ / σ_{ep} determined to 0.5 - 1.5%. Benefit from relatively larger rates for μ 's at +210 MeV/c.

13

 σ_{μ}/σ_{e}

 $\sigma_{e^-}/\sigma_{e^+}$

Two-photon exchange for electrons. Determine 2%* effect with 0.25 - 1.4% data. *Calculations and fits of TPE vary in size.

15

 $\sigma_{\mu^-}/\sigma_{\mu^+}$

Two-photon exchange for muons. Determine 2%* effect with 0.4 - 3% data. *Calculations and fits of TPE vary in size.

- Ratios determined at the percent level
- Most precise comparison of $\sigma_{\!\mu p}\,/\,\sigma_{\!e p}$ by ~ an order of magnitude
 - Gil-Dominguez et al. suggest a 0.01 fm change in radius would result in about a 0.9% change in how fast MUSE cross sections fall with Q².
- Sufficient to determine TPE at the level it is expected to be
 - Comparison of OLYMPUS TPE data to fits and theory suggests TPE correction is sufficient to change radius extractions by ~ 0.01 fm.
- We do need more work on systematic uncertainties in the analysis

- We do have issues each time we move back into PiM1, so we need to minimize the number of times MUSE moves.
- Beam time request assumed practicum is fixed in PiM1.
- Led to plan for 2024:
 - Maintenance work in PiM1 during the spring expecting survey, detectors, GEM DAQ, ...
 - Run through late September / October. (4.5 months)
 - October / November in staging area.
 - Back into PiM1 for November / December. (1.5 month)
 - Goal is to take ~ 6x10⁹ events in scattering runs, improve balance of statistics between different momenta.

- If the practicum can be moved, alternate plan for 2024:
 - Maintenance work in PiM1 during the spring expecting survey, detectors, GEM DAQ, ...
 - Run through late November. (6 months)
 - Back into PiM1 during downtime, after next BV determines 2025 schedule.
 - Goal is to take ~ 6x10⁹ events in scattering runs, improve balance of statistics between different momenta.