
SciCat Search UI
Core Release Status Update

by Igor Khokhriakov aka Ingvord

● Scientific Software Architect at
Hereon/UCSD/DESY

● Tango-Controls Kernel Developer

● ~800 citations on Google Scholar

● >3K followers on LinkedIn

Search UI Release Focus:

- Enhanced User Experience: Develop an intuitive and configurable interface for
efficient dataset management and navigation.

- Personalized Settings: Implement a robust backend to support user-specific settings
for facets, columns, and search preferences.

- Interactive Search Interface: Provide a prominent full-text search bar, dynamic filter
tags, and an interactive display of search results, requiring user action to load data.

- User-Centric Design: Ensure the interface serves to individual user needs, with the
ability to save configurations and reset to defaults, enhancing overall usability and
satisfaction.

Interactive Search Interface

● Design a full-text search feature that spans the entire viewport,
emphasizing its importance and accessibility (#1148).

● Implement filter tags that display current search criteria, allowing users
to understand and modify their search context easily (#1133Ѽ).

● Require user action to initiate the search, avoiding automatic loading of
potentially irrelevant datasets (#1149).

● Integrate an 'Apply' button to trigger the search process, reinforcing
user control over data retrieval (#1149).

Personalized Settings (#604)

● Expand the userSettings endpoint to include user-specific configurations
for columns, filters, and metadata sections.

● Introduce an admin-accessible endpoint for default settings, providing a
foundation for anonymous users and initial user setups.

● Enable users to store their preferences for visible columns and filter facets
within the main Scicat database.

● Ensure that personal settings are dynamically applied across sessions,
offering a consistent and tailored user experience.

● Develop a user-friendly interface for settings adjustment, including a
reset option to revert to default configurations.

User-Centric Design

● Ensure that UI elements like the settings icon are conveniently placed for quick
access to configuration options (#1133Ѭ).

● Design modal dialogs that can be invoked from various UI locations, adapting
to different user workflows (#1132ѵ).

● Implement a blank initial state for dataset lists, prompting users to actively search or
filter to view data (#1149).

● Present a clear and informative message when no datasets are displayed, guiding
users towards using search or filter functions (#1149).

● Optimize the metadata filter widget to accommodate various data types, providing
appropriate matching options for an enhanced search experience (#1141).

Summary: 40% progress of the project has been achieved

Live demo…

Enhanced User Experience (#614)

● Pre-populate the configuration view with metadata from accessible datasets,
offering a smart starting point for user interaction.

● Guess data types for scientific metadata to streamline user configuration
processes.

● Merge high-level field configurations with metadata keys for a unified
configuration approach.

● Facilitate decisions on whether front-end or back-end should handle
configuration merging, enhancing system efficiency.

● Determine admin capabilities for overwriting default configurations, ensuring
flexibility and control in data presentation.

Established a collaboration

Code quality

Single responsibility

See e.g. Dataset-filter.component.ts, PR #1465 or Pagination in #1503

Live Demo…

Readability

See e.g. pid-filter.component.ts in Pr #1465

Avoid Trivial Tests: facetsCount

SciCat (BE) = NestJs = NodeJs + Express

Let’s explore NodeJs+Express performance

https://github.com/Ingvord/shiny-guide

Prerequisites

All tests were performed on a typical single-instance virtual machine, armed
with 8 CPU cores and 12 GB RAM

Wrk2 was used to simulate requests*

wrk -R{1000..10000} -t10 -c1000 -d30

-R – rate

-t – number of threads

-c – connections

-d – duration

Above simulates how 10_000 clients requesting during 30s with various rate

Baseline: 5_000 RPS

IO load (single instance*, 8 instances + nginx)

Single instance

8 instances + nginx

* instance here and below means a process running on the VM

CPU load (single instance, 8 instances + nginx)

Single instance

8 instances + nginx

BONUS:
Webix widgets integration

Thanks!
Questions?

Igor.Khokhriakov@desy.de

https://www.linkedin.com/in/ikhokhryakov/
https://ingvord.ru

mailto:Igor.Khokhriakov@desy.de
https://www.linkedin.com/in/ikhokhryakov/
https://ingvord.ru

