Main Power A309

PDU connection

PDU - a star connection

Calculating the maximum current on the CBs

- As show, the UPS delivers a maximum of 115 kW per switchboard cabinet.
- Before this threshold is reached a warning will be issued.
- Based on this the maximum current can be computed, as shown on the next slides.
- This can be done either by using the inner voltage ($U_{Y}, 230 \mathrm{~V} 1 \mathrm{ph}$ AC) or the outer voltage ($\mathrm{U}, 400 \mathrm{~V} 3 p h \mathrm{AC}$).
- The outer voltage is the geometrical sum of the inner voltage, therefore $U=\sqrt{3} \cdot U_{Y}$

Power calculus for one switchboard cabinet

- Simplifications
- Think of computers as resistive loads
- Avoiding complex power
- Observed power factors $0.90>\cos \varphi>0.98$
- Effective Power $P=3 U_{Y} \cdot I_{Y} \cdot \cos \varphi$
- $\Rightarrow I_{Y}=\frac{P}{3 \cdot U_{Y} \cdot \cos \varphi}$
- For $P \leq 115 \mathrm{~kW}, U_{Y}=230 \mathrm{~V}$ and $\cos \varphi>0.90$
- $I_{Y} \leq 185.2 \mathrm{~A}$
- Conclusion: Even with a rather bad power factor of 0.9 it is not possible to release a 200 A CB in the cabinet.

Power calculus for one cabinet outer voltage

- Simplifications
- Think of computers as resistive loads
- Avoiding complex power
- Effective Power $P=\sqrt{3} \cdot U \cdot I \cdot \cos \varphi$
- $=>\mathrm{I}=\frac{P}{\sqrt{3} \cdot U \cdot \cos \varphi}$
- For $P \leq 115 \mathrm{~kW}, U=400 \mathrm{~V}$ and $\cos \varphi>0.90$
- $I \leq 184.4 \mathrm{~A}$ (rounding difference to previous slide)

Conclusion

- The limiting factor on the electrical power is the power delivered by the UPSs which is at maximum 115 kW per cabinet (460 kW total).
- With the available power it is not possible to release the cabinet's 200 A CB by overload. The CBs are designed to protect the wires not to limit the available power (germ. "Leitungsschutzschalter")
- It is not possible to release the 32 A CBs in the cabinets by overload unless there is a malfunction of the 16 A CBs in the PDU.
- Bottom line: LEE A309 is electrically well engineered - no availability issues reaching the limits of the UPSs possible.

Measures

- Ensure that the UPS alerting is working and that we get a warning when 80% of the power budget is being consumed (not necessarily automated).
- Get a regular energy consumption bill by FM (quarterly or monthly).
- Check the Riedo power concentrator output monthly to avoid unbalanced installations.
- Decide if an additional UPS is needed to uphold a $\mathrm{n}+1$ redundancy.
- Decide on further development on LEE A on ITS GL level.

