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Russian Research Center” Kurchatov Institute”

Alexander Ryazanov

Investigations of radiation resistance of Investigations of radiation resistance of 
fission and fusion structural materials in fission and fusion structural materials in 

RRC KI using charged particle acceleratorsRRC KI using charged particle accelerators

15 March 2010, PSI, Switzerland
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Experience of RRC KI in the Investigations of Experience of RRC KI in the Investigations of 
Materials for Atomic and Fusion ReactorsMaterials for Atomic and Fusion Reactors

 Materials for Fusion ReactorsMaterials for Fusion Reactors::
CC--C,C, SiCSiC, Al2O3, , Al2O3, MgOMgO, ZrO2,, ZrO2,

 Metallic Materials for Atomic ReactorsMetallic Materials for Atomic Reactors::
Austenitic SteelsAustenitic Steels

 Atomic Reactors RBMKAtomic Reactors RBMK::
nuclear graphite, nuclear graphite, pyrolyticpyrolytic graphite, graphite, ZrZr--NbNb

 Basic Research and Theoretical ModelingBasic Research and Theoretical Modeling::
Radiation Damage Formation, Defect   Radiation Damage Formation, Defect   
Cluster Growth, Radiation Swelling, Cluster Growth, Radiation Swelling, 
Radiation Creep, Helium Radiation Creep, Helium EbrittlementEbrittlement

15 March 2010, PSI, Switzerland
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Cyclotron of RRC Cyclotron of RRC ““KurchatovKurchatov InstituteInstitute””

15 March 2010, PSI, Switzerland



44System of cyclotron transportation

cyclotron

15 March 2010, PSI, Switzerland
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Accelerators of Charge Particles of Accelerators of Charge Particles of 
Russian Research Center Russian Research Center ““KurchatovKurchatov InstituteInstitute””

 Cyclotron of RRC KI:Cyclotron of RRC KI:

protons with energyprotons with energy < 35 < 35 MeVMeV, , currentcurrent J < J < 
30 30 mkAmkA

helium ionshelium ions HeHe4 4 with energywith energy < 6< 600 MeVMeV,,
currentcurrent J < J < 220 0 mkAmkA

ionsions OO1616 with energywith energy < < 120120 MeVMeV , current, current J < J < 
55 mkAmkA

ionsions CC12 12 with energywith energy < 8< 800 MeVMeV,, currentcurrent J < J < 55
mkAmkA

15 March 2010, PSI, Switzerland
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Radiation Resistance of Radiation Resistance of 
Graphite MaterialsGraphite Materials

15 March 2010, PSI, Switzerland



77

Graphite materials in Graphite materials in 
TokamaksTokamaks and Fusion Reactor:and Fusion Reactor:

 Limiter and/or protection plate for the inner wallLimiter and/or protection plate for the inner wall
Exposition to:Exposition to:

 VacuumVacuum
 Intense head loadIntense head load
 Edge plasmaEdge plasma
 Fast neutronsFast neutrons

Important behavior:Important behavior:

 Thermal shock resistanceThermal shock resistance
 ThermoThermo--mechanical propertiesmechanical properties
 Accumulation of Hydrogen and Helium in fusion Accumulation of Hydrogen and Helium in fusion 

reactorreactor
 Accumulation of Radiation DamageAccumulation of Radiation Damage
 Sputtering and particle emissionSputtering and particle emission

15 March 2010, PSI, Switzerland
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Graphite Materials for Atomic Reactors :Graphite Materials for Atomic Reactors :

 Reflectors and stopping system of Reflectors and stopping system of 
neutronsneutrons

Exposition to:Exposition to:
 Temperature: T = 300Temperature: T = 300--750 C750 C
 Thermal and Fast neutronsThermal and Fast neutrons

Important behavior:Important behavior:
 Radiation swellingRadiation swelling
 Degradation of thermoDegradation of thermo--mechanical mechanical 

propertiesproperties
 Cracking and fractureCracking and fracture

15 March 2010, PSI, Switzerland
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Graphite Sheave for Graphite Sheave for 
Atomic StationAtomic Station

15 March 2010, PSI, Switzerland
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Graphite Sheave after Irradiation  in Graphite Sheave after Irradiation  in 
Atomic StationAtomic Station

15 March 2010, PSI, Switzerland
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Graphite Elementary CellGraphite Elementary Cell

15 March 2010, PSI, Switzerland
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15 March 2010, PSI, Switzerland
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Radiation Shrinkage and Swelling of GraphiteRadiation Shrinkage and Swelling of Graphite

15 March 2010, PSI, Switzerland
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Radiation Damage in GraphiteRadiation Damage in Graphite

15 March 2010, PSI, Switzerland
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Ion beam irradiation and Surface profile characterizationIon beam irradiation and Surface profile characterization

Precision surface profilingIrradiated 
surface

Ion beam irradiation

Mo mesh

CVD-SiC

Ion beam irradiation

Mo mesh

CVD-SiC

250m

Experimental tests of radiation resistance of SIC materials

15 March 2010, PSI, Switzerland
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Experimental Measurement of Radiation Swelling

V  V (av)   Z  d

av – Averaged dpa profile,
 Z - Height of step between irradiated and no irradiated area,
d   - Penetration depth of irradiated sample.

15 March 2010, PSI, Switzerland
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Dose dependence of radiation swelling in SiC

15 March 2010, PSI, Switzerland
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Scheme of Irradiation of Graphite 
Samples by Carbon Ions

Sample 3

Sample 2Sample 1

Irradiated 
Area

15 March 2010, PSI, Switzerland
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Picture of Irradiated and Unirradiated Sample Area,
Measurement of Radiation Swelling

Unirradiated
area Irradiated area
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Dose Dependence of Radiation Swelling Dose Dependence of Radiation Swelling 
PyrolyticPyrolytic graphite at Egraphite at ECC = 3 = 3 MeVMeV, T=4, T=4550 C0 C

Dose (dpa)

(1dpa = 10E21 n/cm2)
15 March 2010, PSI, Switzerland
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Dose Dependence of Radiation Swelling Dose Dependence of Radiation Swelling 
Reactor Graphite at EReactor Graphite at ECC = 3 = 3 MeVMeV, T=450 C, T=450 C

Dose (dpa) (1dpa = 10E21 n/cm2)

15 March 2010, PSI, Switzerland
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mmLL CDbZJ  2

Current of point defects on dislocation loop:

mmVVV CDZRJ  4

Current of point defects on spherical void:

mmSS CDdZJ  2

Current of point defects on disk void:

Radiation swelling of graphite:

VLLvi VNCCS  242,108,072,2

Graphite - two diamenthial anisotropic diffusivity

Crystal lattice  of         
graphite 

с

a

15 March 2010, PSI, Switzerland
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Dose dependence of void and loop 
radius

Dose (dpa)
15 March 2010, PSI, Switzerland
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Dose dependence of swelling

Dose (dpa)

15 March 2010, PSI, Switzerland
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Modeling of dislocation loops in graphite

z

r

15 March 2010, PSI, Switzerland
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Distribution of displacement field Uz near 
dislocation loop in graphite as a function of 

distance from loop
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Bragg scattering in neutron Bragg scattering in neutron 
irradiated graphiteirradiated graphite

Experimental Results Theoretical calculations

15 March 2010, PSI, Switzerland
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Bragg scattering in CBragg scattering in C--ion irradiated ion irradiated 
graphite with energy 20 graphite with energy 20 MeVMeV
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Radiation Resistance of Radiation Resistance of 
Ceramic MaterialsCeramic Materials

15 March 2010, PSI, Switzerland
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Dose rate dependence of Ion-induced swelling in CVD-SiC
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The displacement damage rates were 1×10-4 and 1×10-3 dpa/s at 
333K-873K and 1×10-5 dpa/s at 333K with single-beam irradiation. The 
error bars represent the 96% confidence limits for the Gaussian 
distribution. (A. Kohyama) 

15 March 2010, PSI, Switzerland



3131

Effect of Helium on Radiation Swelling of Effect of Helium on Radiation Swelling of SiCSiC

2.8mm

2.0mm

15mm

Fiber direction

Dual-beam 
ion irradiation

Tungsten
thermalizing

block Electron-beam
heating

Slicing by a dicing sawThin foil processing by an FIB device

Irradiation sample preparation

Metallic ions

Helium ions

Institute of Advanced Energy

Kyoto University

E xperimental procedure illus trated A. Kohyama

15 March 2010, PSI, Switzerland
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Depth-profiles of atomic displacement damage, deposited He and Ni ions in dual-
beam irradiated randomly oriented micro-crystalline SiC calculated by TRIM-92 
assuming target mass density of 3.21g/cm3 and average displacement threshold 
energy of 35eV.

dpa
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<Single-beam>
Effect of

displacement
damage
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Synergistic effect 
of displacement

and helium
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<Unirradiated>
Free from 
irradiation 

effects

Profiles of displacement damage and deposited Ni in irradiated 
monolithic SiC. Calculated by TRIM-92 assuming Ed=35eV, =3.21g/cm3.

15 March 2010, PSI, Switzerland
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TEM images and SAD patterns for single-beam (A,B), dual-beam 
(C,D) and unirradiated (E,F) regions of Hi-Nicalon Type-S/C/SiC

composite
Single-beam
10 dpa
873 K

1x10-3 dpa/s

Dual-beam
10 dpa
873 K
1x10-3 dpa/s
60appm-
He/dpa

Unirradiated
Dark field 
images from 
SiC <111>
diffraction 
rings.

TEM images and SAD patterns for single-beam (A,B), dual-beam 
(C,D) and unirradiated (E,F) regions of Hi-Nicalon Type-S/C/SiC

composite
Single-beam
10 dpa
873 K

1x10-3 dpa/s

Dual-beam
10 dpa
873 K
1x10-3 dpa/s
60appm-
He/dpa

Unirradiated
Dark field 
images from 
SiC <111>
diffraction 
rings.

15 March 2010, PSI, Switzerland
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Dual ion beam irradiation-induced swelling in CVD-SiC 
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Theoretical Calculations of effect of Helium on Theoretical Calculations of effect of Helium on 
Radiation Swelling in Radiation Swelling in SiCSiC at RRC KIat RRC KI

with helium implantation (ν= 3.0x10-with helium implantation (ν

-

A.Ryazanov, A.Kohyama et al

15 March 2010, PSI, Switzerland
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He accumulation and irradiation-induced swelling 
in dual- and single-ion irradiated CVD-SiC at 873K 
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Difference between metals and dielectrics

Metals:
• Point defects are neutral

• Electric field does not exist in the matrix

Dielectrics (Ceramic Materials):

• Point defects can have effective charge

• Electric field exists in the matrix under the 
influence of an applied electric field

• Driving force due to an electric field can have a 
strong effect on diffusivity of charged point defects

15 March 2010, PSI, Switzerland
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Metals
Interstitial

0 VI qqVacancy
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Dielectrics )0( 0 E
Interstitial Iq Vacancy Vq
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Boundary Conditions
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Modeling of Dislocation Loops in Ceramics 
Materials (SiC)
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15 March 2010, PSI, Switzerland
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24 November, 200515 March 2010, PSI, Switzerland .      

Theoretical calculations for time dependence of dislocation 
loop growth at different irradiation temperatures in SiC
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24 November, 2005

Dose dependence of radiation swelling in SiC at 
different irradiation temperatures

15 March 2010, PSI, Switzerland
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The comparison of experimental and theoretical temperature 
dependencies of radiation swelling in SiC. 

A.I.Ryazanov,

A.V.Klaptsov,

A.Kohyama

(JNM,2002)

15 March 2010, PSI, Switzerland
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 Specimens: 13mol% Y2O3Specimens: 13mol% Y2O3--ZrO2 single crystal (Earth ZrO2 single crystal (Earth 
Jewelry Co.)Jewelry Co.)

 surface orientation: (111)surface orientation: (111)
 Irradiation:Irradiation:

•• ions: 100 ions: 100 keVkeV He+ at 870 K, up to 1x1020 ions/m2He+ at 870 K, up to 1x1020 ions/m2
 4 4 keVkeV ArAr+ at 300 K+ at 300 K
 300 300 keVkeV O+ at 470O+ at 470--1070 K,  up to 5x1019 ions/m21070 K,  up to 5x1019 ions/m2

•• electrons: 1000 electrons: 1000 keVkeV at 470at 470--1070 K, up to 1.4x1027 e/m21070 K, up to 1.4x1027 e/m2
•• electron irradiation subsequent to ion irradiation:electron irradiation subsequent to ion irradiation:

 100100--1000 1000 keVkeV electrons at 370electrons at 370--520 K520 K
 Observations:Observations:

•• in situ and exin situ and ex--situ TEMsitu TEM
 HVEM (JEMHVEM (JEM--1000, HVEM lab., Kyushu University )1000, HVEM lab., Kyushu University )
 TEM (JEMTEM (JEM--2000EX, HVEM lab., Kyushu University)2000EX, HVEM lab., Kyushu University)
 TEMTEM--accelerator facility (JEMaccelerator facility (JEM--4000FX, TIARA, JAERI4000FX, TIARA, JAERI--Takasaki)Takasaki)

INSTABILITY OF INTERSTITIAL CLUSTERS UNDER INSTABILITY OF INTERSTITIAL CLUSTERS UNDER 
ION AND ELECTRON IRRADIATIONS ION AND ELECTRON IRRADIATIONS 

IN CERAMIC MATERIALIN CERAMIC MATERIAL
Experimental

15 March 2010, PSI, Switzerland
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500 nm

Defect clusters in yttriumDefect clusters in yttrium--stabilized stabilized zirconiazirconia

--300 300 keVkeV O+O+ionsions: : 5.1x1017  ions/m2  at 470 K5.1x1017  ions/m2  at 470 K
--200 200 keVkeV electronselectrons at at 370 K370 K

15 March 2010, PSI, Switzerland
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Instability of Interstitial Clusters

15 March 2010, PSI, Switzerland



48

 irradiation condition: under 100-1000 keV electron irradiation 
subsequent to ion irradiation (100 keV He+, 300 keV O+, 4keV Ar+)

 strong strain and stress fields  
 very high growth rate  ≈ 1-3nm/sec
 preferential formation around a focused electron beam
 preferential formation at thick regions
 critical radius: 1.2 m

- sudden conversion to the dislocation network
- repeat nucleation, growth and conversion to dislocation structure 

on dislocation lines

Characteristic features of the extended 
defects in yttrium stabilized zirconia

15 March 2010, PSI, Switzerland
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Shear stress component induced by 
charged dislocation loop  
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Total normal stress component 
induced by charged dislocation loop

15 March 2010, PSI, Switzerland
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A.I. A.I. RyasanovRyasanov,  S.T. ,  S.T. LatushkinLatushkin,  V.N. ,  V.N. UneghevUneghev, (RRC KI), (RRC KI)
V.N. V.N. ShishovShishov, V.V. , V.V. NovikovNovikov, V.A. , V.A. MarkelovMarkelov,  A.A. ,  A.A. BalashovBalashov (VNIINM)(VNIINM)

Radiation Resistance of Radiation Resistance of 
ZrZr--AlloysAlloys

15 March 2010, PSI, Switzerland



5353

0 ,0 2 ,0 x 1 0 5 4 ,0 x 1 0 5 6 ,0 x 1 0 5 8 ,0 x 1 0 5

1 x 1 0 -5

1 x 1 0 -4

1 0 -3

1 0 -2

1 0 -1

1 0 0

N
um

be
r p

er
 a

to
m

D e p th , A n g

 Io n  d is tr ib u tio n
 V a c a n c y  d is tr ib u t io n

H e ;1 5 M e V

Generation Rate of Point Defects under Irradiation Generation Rate of Point Defects under Irradiation 
of of ZrZr alloy by 15 alloy by 15 MeVMeV Helium Ions at Irradiation Helium Ions at Irradiation 

Dose 10E17cm2Dose 10E17cm2
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Microstructure of Irradiated and Microstructure of Irradiated and unirradiatedunirradiated ZrZr alloys: alloys: ЭЭ110 110 and and ЭЭ635635
(Distribution of(Distribution of ββ–– NbNb phases, Laves phases phases, Laves phases ZrZr((NbNb,,FeFe)2)2 and and 

dislocations dislocations сс--type)type)

х10 000
Unirrad.

х50 000
Irradiat.

Э110  - β-Nb Э635 Laves phase Zr(Nb,Fe)2

15 March 2010, PSI, Switzerland
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Microstructure of neutron irradiatedMicrostructure of neutron irradiated ZrZr russianrussian alloys:alloys: ЭЭ635 635 ии
ЭЭ110110 up to dosesup to doses FF=0,5=0,5хх10261026nn//mm2 (2 2 (2 dpadpa): ): distribution of distribution of 

precipitates and ordered dislocation loops (precipitates and ordered dislocation loops (аа--type)type)..

D = 10-20 nm,

N =10E16 cm-3

15 March 2010, PSI, Switzerland
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Microstructure of Microstructure of ZrZr alloyalloy ЭЭ110110 irradiated on cyclotron by helium irradiated on cyclotron by helium 
ions with energy 10 ions with energy 10 MeVMeV atat ТТ=350=350оСоС dose of irradiationdose of irradiation 1 1 dpadpa

(2(2хх1010EE1717p/cm2p/cm2))))

D = 5-10 nm,

N =10E17 cm-3

GB

Denuded 
Zone

15 March 2010, PSI, Switzerland
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Microstructure of Microstructure of ZrZr alloyalloy ЭЭ635 irradiated on cyclotron by protons 635 irradiated on cyclotron by protons 
with energy 4 with energy 4 MeVMeV atat ТТ=350=350оСоС dose of irradiationdose of irradiation 1 1 dpadpa

(2(2хх1010EE1717p/cm2p/cm2))))

Found optimal irradiation regime allowing to irradiate Zr alloys at 
T= 300–350 °C up to 100 μm deep to doses 10 dpa. 

Ordered DL

15 March 2010, PSI, Switzerland
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Studies of proton beam irradiation on graphite 
collimator materials for LHC

A.I.Ryazanov*, A.N.Bruchanov*, O.K.Chugunov*,
S.T.Latushkin*, K.E.Prichodko*, V.N. Unezhev*,

R.Assmann**, O.Aberle**, A.Bertarelli**, R.Schmidt**

*Russian Research Centre “Kurchatov Institute”,
123182, Moscow, Kurchatov Sq.1, Russia

**CERN CH-1211 Geneva 23, Switzerland

15 March 2010, PSI, Switzerland
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Task: Proton Irradiation Damage Assessment of 
LHC Graphite Collimator Materials

• Main aim of studies – to measure the effect of 
proton irradiation on physical-mechanical 
material properties: thermal conductivity,  
thermal expansion, mechanical properties, 
electrical resistivity, microstructure change

Objective:
• Determine the effect of PKA proton energy 

spectrum near 7 TeV proton beam on physical -
mechanical properties of graphite collimator 
material for LHC – irradiation of graphite by 
protons with the 35 MeV energy at different doses
and theoretical modeling of main physical 
phenomena of radiation effects on materials

15 March 2010, PSI, Switzerland
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Neutron  energy spectrum per one 7 TeV proton in graphite 
on the several penetration depths of proton.
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Investigated Graphite Collimator 
Materials for LHC

• C-C  Composite Graphite Material 
AC-150

Three orientations:

15 March 2010, PSI, Switzerland
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Measured values

• d - density
• λ - thermal conductivity coefficient (at T < 

700°С)
• ρ - electrical resistivity (at T < 700°С)
• α - thermal expansion coefficient (at T < 

700°С)
• σ - compression ultimate tensile stress
• Ed - dynamic elastic module
• Es - static elastic module
• a, c - lattice constants (X-ray method)

15 March 2010, PSI, Switzerland
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Scheme of experimental tests of C-C samples on cyclotron

4  September 2007, CERN, Geneva
15 March 2010, PSI, Switzerland
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Target device for proton irradiation of graphite 
samples on RRC KI cyclotron

1-Corps of target device

2-Graphite diaphragm

3-Irradiated samples

4-Foil window

5-Holder of samples

6-Main holders

7-Thermocouples

water
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Preparation of three orientations of graphite 
samples for experimental tests

R T A

A

T

R

P

15 March 2010, PSI, Switzerland
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№ sample. d, g/cm3 Е, GPa ρ, 10-6 Ом.м α, 10-6, 1/К

10R(TA-1) 1.66 3.2 27.8 10.31
10R(TA-2) 1.66 2.96 30 10.31

10R(TA-3) 1.66 3.2 29.1 10.31

Average 1.66 3.12 28.9666667 10.31
Magnification 0 0.13856406 1.106044

10Т(AR-1) 1.65 9.3 5.6 0.25

10Т(AR-2) 1.64 9.1 5.1 0.25

10Т(AR-3) 1.56 9.3 5.7 0.25

Average 1.61666667 9.23333333 5.46666667 0.25
Magnification 0.04932883 0.11547005 0.32145503

10А(RT-1) 1.54 8.4 5.5 0.167

10А(RT-2) 1.64 8.4 5.7 0.167

10А(RT-3) 1.63 9.16 5.6 0.167

Average 1.603333333 8.653333333 5.6 0.167
Magnification 0.055075705 0.438786205 0.1

Results of physical-mechanical tests (№10)

15 March 2010, PSI, Switzerland
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Generation rate of point radiation defects under irradiation of 
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№
sam
pl.

Е 0/E 
GP 
a

ΔЕ/Е, 
%

ρисх/ ρобл, 10-6

Ом.м
Δ ρ/ ρ ,      

%
λисх/λобл
Вт/мК

Δλ/λ, 
%

σисх/σобл
МПа

Δσ/σ
, 
%

First Irradiation (  0..002dpa)

4R(TA-1) 3,5/4,0 14 28,8/29,65 3 50/48 6 61/65,3 7

4Т(AR-1) 8,1/8,86 9 5,65/8 42 215/150 30 57/59,9 5

4А(RT-1) 9,2/9,6 4 6,2/9,4 52 215/130 39 60/61,2 2

Second Irradiation ( 0..0.2dpa)

4R(TA-2) 4,8/6,9 42,7 29,9/62,5 109 51/25 51 61/73,8 21

4Т(AR-2) 9,3/10 7,5 5,7/17 198 215/80 62 57/60,4 6

4А(RT-2) 8,8/9,3 5,7 5,75/12 109 215/105 51 60/62,4 4

Third  Irradiation  ( 0..2dpa)

4R(TA-3) 3,7/5,5 48,8 27.6/108 290 51/15 -70 61/74,4 22

4Т(AR-3) 8,3/9,1 9,6 5.56/26,8 370 215/55 -74 57/59,9 5

4А(RT-3) 9 4/10 2 8 5 5 5/26 5 381 215/56 -72 60/62 4 4

Results of physical-mechanical property changes of 
graphites after proton irradiation
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Dose dependence of radiation swelling
for three orientations of graphite.

15 March 2010, PSI, Switzerland
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Dose dependence of elastic Yung module 
for three orientations of graphite.

15 March 2010, PSI, Switzerland
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Dose dependence of electrical resistance
for three orientations of graphite.
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Dose dependence of thermal expansion coefficient
for three orientations of graphite.
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Generation Rate of Point Defects under Irradiation 
of Graphite by 5 MeV Carbon Ions at Irradiation 

Dose 5.10E17cm2
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Scheme of Irradiation of Graphite 
Samples

Sample 3

Sample 2Sample 1

Irradiated 
Area

15 March 2010, PSI, Switzerland
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Measurements of Radiation Induced Deformation in 
Graphite Composite Material REC Irradiated by Carbon 
Ions with the Energy 5 MeV at Irradiation Dose:  3x10 

E17 p/см 2

15 March 2010, PSI, Switzerland
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Measurements of Radiation Induced Deformation in 
Graphite Composite Material AC Irradiated by Carbon 
Ions with the Energy 5 MeV at Irradiation Dose:  1x10 

E17 p/см 2

15 March 2010, PSI, Switzerland
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Measurements of Radiation Induced Deformation in 
Graphite Composite Material R4SSO Irradiated by Carbon 

Ions with the Energy 5 MeV at Irradiation Dose:  3x10 
E17 p/см 2

15 March 2010, PSI, Switzerland
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Measurements of Radiation Induced Deformation in 
Pyro -Graphite Material Irradiated by Carbon Ions with 

the Energy 5 MeV at Irradiation Dose:  1x10 E17 p/см 2

15 March 2010, PSI, Switzerland
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Dose Dependence of Radiation Swelling of 
Graphite Collimator Materials of LHC
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Dose Dependence of Radiation Swelling of 
Pyro-graphite Material

Dose, (C ions per cm2, 10E17)
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Future tests for of physical – mechanical 
properties changes on proton irradiated 
Graphite Collimator Materials for  LHC

The following measurements shall be performed in all three directions of 
the irradiated C-C graphite materials (where applicable):

• Thermal conductivity (to ± 5 W/m/K).
• Electrical resistivity (to ± 1 mΩ m).
• Thermal expansion coefficient (to ± 10-6 / ºC).
• Mechanical strength (elastic modulus, deformation to rupture, ultimate 

tensile and compression stress, yield stress).
• Microstructure change with scale (visual analysis).
• Radiation erosion.
• Density and specific heat.
• Dimensions.
Make analysis with TEM, STEM, radiography and mechanical and 

electrical test equipment on irradiated and non-irradiated samples.
• Make theoretical analysis (dpa levels per sample and help in predictions 

for the LHC irradiation conditions).

15 March 2010, PSI, Switzerland
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Theoretical modeling of shock wave formation 
under 450 GeV and 7 TeV proton beams in 

collimator materials for LHC

A.I.Ryazanov*, E.V.Semenov*,A.A.Shvets*,
A.V.Stepakov*, V.Baranov*, 

R.Assmann**,  A.Ferrary**, R.Schmidt**

*Russian Research Centre “Kurchatov Institute”,
123182, Moscow, Kurchatov Sq.1, Russia

**CERN CH-1211 Geneva 23, Switzerland
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Conclusion
 The results presented here allow to clarify main physical mechanisms of radiation resistance of 

fission and fusion structural materials using charged particle  irradiation on accelerators.

 Using accelerators of charged particles allow to investigate the following physical phenomena 
in irradiated materials for fission and fusion reactors:

- Radiation hardening
- Radiation swelling
- Irradiation creep  
- Helium and hydrogen embrittlement
- Fracture processes under irradiation
at high irradiation doses and different temperatures.

 The changes of physical-mechanical properties for the following fission and fusion structural 
materials can be analyzised:

- Graphite and С-С composites
- Ceramic materials: SiC, MgO, ZrO2, Al2O3
- Zr alloys
- Ferritic / martensitic and austenitic steels
- ODS materials
- V alloys

 Using accelerators can help to make chose more radiation resistance materials
for fission and fusion reactors during short irradiation time comparing with atomic reactors

15 March 2010, PSI, Switzerland


