Russian Research Center" Kurchatov Institute"

Investigations of radiation resistance of fission and fusion structural materials in RRC KI using charged particle accelerators

Alexander Ryazanov

Experience of RRC KI in the Investigations of Materials for Atomic and Fusion Reactors

- **Materials for Fusion Reactors:**
 - C-C, SiC, Al2O3, MgO, ZrO2,
- Metallic Materials for Atomic Reactors:
 - Austenitic Steels
- Atomic Reactors RBMK:

 nuclear graphite, pyrolytic graphite, Zr-Nb
 Basic Research and Theoretical Modeling: Radiation Damage Formation, Defect Cluster Growth, Radiation Swelling, Radiation Creep, Helium Ebrittlement

Cyclotron of RRC "Kurchatov Institute"

Accelerators of Charge Particles of Russian Research Center "Kurchatov Institute"

```
Cyclotron of RRC KI:
```

```
protons with energy < 35 MeV, current J < 30 mkA
```

```
helium ions He^4 with energy < 60 MeV,
current J < 20 mkA
```

ions O¹⁶ with energy < 120 MeV , current J < 5 mkA

ions C¹² with energy < 80 MeV, current J < 5 mkA

Radiation Resistance of Graphite Materials

Graphite materials in Tokamaks and Fusion Reactor:

Limiter and/or protection plate for the inner wall Exposition to:

- Vacuum
- Intense head load
- Edge plasma
- Fast neutrons

Important behavior:

- Thermal shock resistance
- Thermo-mechanical properties
- Accumulation of Hydrogen and Helium in fusion reactor
- Accumulation of Radiation Damage
- Sputtering and particle emission

Graphite Materials for Atomic Reactors :

Reflectors and stopping system of neutrons

Exposition to:

- Temperature: T = 300-750 C
- Thermal and Fast neutrons

Important behavior:

- Radiation swelling
- Degradation of thermo-mechanical properties
- Cracking and fracture

Graphite Sheave after Irradiation in Atomic Station

Graphite Elementary Cell

Cell Size Change of Irradiated Pyrographite in Dependence on Irradiation Dose and Temperature

15 March 2010, PSI, Switzerland

12

Radiation Shrinkage and Swelling of Graphite

Radiation Damage in Graphite

Experimental Measurement of Radiation Swelling

$\Delta V/V (\Phi_{av}) \cong \Delta Z/d$

 Φ_{av} – Averaged dpa profile,

- ΔZ Height of step between irradiated and no irradiated area,
- **d** Penetration depth of irradiated sample.

Dose dependence of radiation swelling in SiC

Scheme of Irradiation of Graphite Samples by Carbon Ions

Picture of Irradiated and Unirradiated Sample Area, Measurement of Radiation Swelling Unirradiated **Irradiated area** area 12/01 160 ID# VERT. 200um 0.nm R 163.9um 163.9um 120 Avg 94.95um TIŘ 178.7um Ra 72.52um HORIZ 2000um 80 0.00um R 2000.um 2000.um Angle N/A SCAN MENU 3 40 UM s/UM 10000 .2 2000 .2 1 400 1 5 80 5 25 19 SCAN t=40 s 1500 DIR. -> 500 1000 UM STYLUS 13mg DATA OUT OF RANGE. 0 2000um LEVEL

Dose Dependence of Radiation Swelling Pyrolytic graphite at Ec = 3 MeV, T=450 C

15 March 2010, PSI, Switzerland

oa = 1⁄0E21 /h/cm2)

Dose Dependence of Radiation Swelling Reactor Graphite at Ec = 3 MeV, T=450 C

Graphite - two diamenthial anisotropic diffusivity

Current of point defects on dislocation loop:

graphite

$$J_L = -2\pi b Z_L D_m C_m$$

Current of point defects on spherical void:

$$J_V = -4\pi R_V Z_V D_m C_m$$

Current of point defects on disk void:

$$J_{S} = -2\pi dZ_{S} D_{m} C_{m}$$

Radiation swelling of graphite:

$$S = 2,72C_i - 0,08C_v + 1,242N_LV_L + \Delta \rho_V$$

Dose dependence of void and loop radius

15 March 2010, PSI, Switzerland

23

Dose dependence of swelling

15 March 2010, PSI, Switzerland

Modeling of dislocation loops in graphite

Distribution of displacement field Uz near dislocation loop in graphite as a function of distance from loop

Bragg scattering in neutron irradiated graphite

Experimental Results

Theoretical calculations

Bragg scattering in C-ion irradiated graphite with energy 20 MeV

Radiation Resistance of Ceramic Materials

Dose rate dependence of Ion-induced swelling in CVD-SiC

The displacement damage rates were 1×10^{-4} and 1×10^{-3} dpa/s at 333K-873K and 1×10^{-5} dpa/s at 333K with single-beam irradiation. The error bars represent the 96% confidence limits for the Gaussian distribution. (A. Kohyama)

Effect of Helium on Radiation Swelling of SiC

Profiles of displacement damage and deposited Ni in irradiated monolithic SiC. Calculated by TRIM-92 assuming Ed=35eV, ρ =3.21g/cm³.

Depth-profiles of atomic displacement damage, deposited He and Ni ions in dualbeam irradiated randomly oriented micro-crystalline SiC calculated by TRIM-92 assuming target mass density of 3.21g/cm³ and average displacement threshold energy of 35eV.

TEM images and SAD patterns for singlebeam (A,B), dual-beam (C,D) and unirradiated (E,F) regions of Hi-Nicalon® Type-S/C/SiC composite

Single-beam 10 dpa 873 K 1x10⁻³ dpa/s

Dual-beam 10 dpa 873 K 1x10⁻³ dpa/s 60appm-He/dpa

Unirradiated Dark field images from SiC <111> diffraction rings.

Dual ion beam irradiation-induced swelling in CVD-SiC

Theoretical Calculations of effect of Helium on Radiation Swelling in SiC at RRC KI

He accumulation and irradiation-induced swelling in dual- and single-ion irradiated CVD-SiC at 873K

Difference between metals and dielectrics

Metals:

- Point defects are neutral
- Electric field does not exist in the matrix

Dielectrics (Ceramic Materials):

- Point defects can have effective charge
- Electric field exists in the matrix under the influence of an applied electric field
- Driving force due to an electric field can have a strong effect on diffusivity of charged point defects

Modeling of Dislocation Loops in Ceramics Materials (SiC)

System of Equations

$$D_{m}\Delta C_{m} + \frac{qv_{m}}{kT} D_{m}\nabla(C_{m}\nabla\phi) = 0$$
$$\Delta\phi = -\frac{4\pi}{\varepsilon\omega} \left(\sum_{m} qv_{m}C_{m} + \rho\right)$$

Boundary Conditions

Main parameter values used for numerical calculations of radiation swelling in SiC

$G_1 = G_{Si}$	Point defect generation rate of Si atoms	3.10 ⁻³ dpa/s
$G_2 = G_C$	Point defect generation rate of C atoms	1.10 ⁻³ dpa/s
E ^{Si} mV	Silicon vacancy migration energy	2.3 eV
E_{mV}^{C}	Carbon vacancy migration energy	2.0 eV
E_{ml}^{Si}	Silicon interstitial migration energy	0.4 eV
E_{ml}^{C}	Carbon interstitial migration energy	0.3 eV
E ^{si} Fv	Silicon vacancy formation energy	2.5 eV
E ^c _{FV}	Carbon vacancy formation energy	2.4 eV
$ ho_{ m D}$	Network dislocation density	10 ¹⁰ cm ⁻²
$\boldsymbol{e}_{v_1} = \boldsymbol{e}_{v_2}$	Vacancy dilatation	-0.1
а	Lattice parameter	5.14×10^{-8} cm

$$D_{VK} = D_{VK}^{O} \exp(-E_{mV}^{K}/T), \text{ (where } D_{V1}^{O} = D_{V2}^{O} = 10^{-2} \text{ cm}^{-2}\text{)},$$

$$N_{L} = N_{L}^{O} [\exp(E_{m1}^{1}/T) + \exp(E_{m1}^{2}/T)]^{1/2}, \text{ (where } N_{L}^{O} = 3.10^{12} \text{ cm}^{-3}\text{)}.$$

Theoretical calculations for time dependence of dislocation loop growth at different irradiation temperatures in SiC

The comparison of experimental and theoretical temperature dependencies of radiation swelling in SiC.

INSTABILITY OF INTERSTITIAL CLUSTERS UNDER ION AND ELECTRON IRRADIATIONS IN CERAMIC MATERIAL

Experimental

- Specimens: 13mol% Y2O3-ZrO2 single crystal (Earth Jewelry Co.)
 - surface orientation: (111)
- □ Irradiation:

- ions: 100 keV He+ at 870 K, up to 1x1020 ions/m2
 - 4 keV Ar+ at 300 K
 - 300 keV O+ at 470-1070 K, up to 5x1019 ions/m2
- electrons: 1000 keV at 470-1070 K, up to 1.4x1027 e/m2
- electron irradiation subsequent to ion irradiation:
 - 100-1000 keV electrons at 370-520 K

Observations:

- in situ and ex-situ TEM
 - HVEM (JEM-1000, HVEM lab., Kyushu University)
 - TEM (JEM-2000EX, HVEM lab., Kyushu University)
 - TEM-accelerator facility (JEM-4000FX, TIARA, JAERI-Takasaki)

Defect clusters in yttrium-stabilized zirconia

-300 keV O+ions: 5.1x1017 ions/m2 at 470 K -200 keV electrons at 370 K

Instability of Interstitial Clusters

Characteristic features of the extended defects in yttrium stabilized zirconia

- irradiation condition: under 100-1000 keV electron irradiation subsequent to ion irradiation (100 keV He⁺, 300 keV O⁺, 4keV Ar⁺)
- strong strain and stress fields
- ♦ very high growth rate ≈ 1-3nm/sec
- preferential formation around a focused electron beam
- preferential formation at thick regions
- critical radius: 1.2 μm
 - sudden conversion to the dislocation network
 - repeat nucleation, growth and conversion to dislocation structure on dislocation lines

Cross section for displacement in ZrO2

under electron irradiation

Shear stress component induced by charged dislocation loop

 $\sigma^{\rm tot}$

Total normal stress component induced by charged dislocation loop

Radiation Resistance of Zr-Alloys

A.I. Ryasanov, S.T. Latushkin, V.N. Uneghev, (RRC KI) V.N. Shishov, V.V. Novikov, V.A. Markelov, A.A. Balashov (VNIINM)

Generation Rate of Point Defects under Irradiation of Zr alloy by 15 MeV Helium Ions at Irradiation Dose 10E17cm2

Microstructure of Irradiated and unirradiated Zr alloys: 9110 and 9635 (Distribution of β– Nb phases, Laves phases Zr(Nb,Fe)2 and dislocations c-type)

Э110 - β-Nb

3635 Laves phase Zr(Nb,Fe)2

Microstructure of neutron irradiated Zr russian alloys: Э635 и Э110 up to doses F=0,5x1026n/m2 (2 dpa): distribution of precipitates and ordered dislocation loops (a-type).

Microstructure of Zr alloy 3635 irradiated on cyclotron by protons with energy 4 MeV at T=350oC dose of irradiation 1 dpa (2x10E17p/cm2))

Found optimal irradiation regime allowing to irradiate Zr alloys at T= 300-350 °C up to $100 \mu m$ deep to doses 10 dpa.

15 March 2010, PSI, Switzerland

57

Studies of proton beam irradiation on graphite collimator materials for LHC

A.I.Ryazanov^{*}, A.N.Bruchanov^{*}, O.K.Chugunov^{*}, S.T.Latushkin^{*}, K.E.Prichodko^{*}, V.N. Unezhev^{*}, R.Assmann^{**}, O.Aberle^{**}, A.Bertarelli^{**}, R.Schmidt^{**}

*Russian Research Centre "Kurchatov Institute", 123182, Moscow, Kurchatov Sq.1, Russia

**CERN CH-1211 Geneva 23, Switzerland

Task: Proton Irradiation Damage Assessment of LHC Graphite Collimator Materials

 <u>Main aim of studies</u> – to measure the effect of proton irradiation on physical-mechanical material properties: thermal conductivity, thermal expansion, mechanical properties, electrical resistivity, microstructure change

Objective:

 Determine the effect of PKA proton energy spectrum near 7 TeV proton beam on physical mechanical properties of graphite collimator material for LHC – irradiation of graphite by protons with the 35 MeV energy at different doses and theoretical modeling of main physical phenomena of radiation effects on materials

Neutron energy spectrum per one 7 TeV proton in graphite on the several penetration depths of proton.

Investigated Graphite Collimator Materials for LHC

 C-C Composite Graphite Material AC-150
 Three orientations:

Measured values

- d density
- λ thermal conductivity coefficient (at T < 700°C)
- ρ electrical resistivity (at T < 700°C)
- α thermal expansion coefficient (at T < 700°C)
- σ compression ultimate tensile stress
- Ed dynamic elastic module
- Es static elastic module
- a, c lattice constants (X-ray method)

Scheme of experimental tests of C-C samples on cyclotron

Target device for proton irradiation of graphite samples on RRC KI cyclotron

- **1-Corps of target device**
- 2-Graphite diaphragm
- **3-Irradiated samples**
- **4-Foil window**
- **5-Holder of samples**
- **6-Main holders**
- **7-Thermocouples**

Preparation of three orientations of graphite samples for experimental tests

Results of physical-mechanical tests (Nº10)

.№ sample.	d, g/cm3	E, GPa	р, 10 ⁻⁶ Ом.м	α, 10 ⁻⁶ , 1/Κ
10R(TA-1)	1.66	3.2	27.8	10.31
10R(TA-2)	1.66	2.96	30	10.31
10R(TA-3)	1.66	3.2	29.1	10.31
Average	1.66	3.12	28.9666667	10.31
Magnification	0	0.13856406	1.106044	
10T(AR-1)	1.65	9.3	5.6	0.25
10T(AR-2)	1.64	9.1	5.1	0.25
10T(AR-3)	1.56	9.3	5.7	0.25
Average	1.61666667	9.23333333	5.46666667	0.25
Magnification	0.04932883	0.11547005	0.32145503	
10A(RT-1)	1.54	8.4	5.5	0.167
10A(RT-2)	1.64	8.4	5.7	0.167
10A(RT-3)	1.63	9.16	5.6	0.167
Average	1.603333333	8.653333333	5.6	0.167
Magnification	0.055075705	0.438786205	0.1)(

Temperature dependence of electrical resistance for three orientations of graphite samples

15 March 2010, PSI, Switzerland

conductivity for three orientations of graphite

15 March 2010, PSI, Switzerland

Temperature dependence of thermal expansion coefficient of AC-150.

15 March 2010, PSI, Switzerland

Generation rate of point radiation defects under irradiation of graphite by 30 MeV protons at Dose 1.10E17cm2

15 March 2010, PSI, Switzerland

Results of physical-mechanical property changes of graphites after proton irradiation

. <u>№</u> sam pl.	E ₀ /E GP a	ΔΕ/E, %	ρ _{исх} / ρ _{обл} , 10 ⁻⁶ Ом.м	Δρ/ρ, %	λ _{исх} /λ _{обл} Вт/мК	Δλ/λ, %	σ _{исх} /σ _{обл} МПа	Δσ/σ , %			
First Irradiation (0002dpa)											
4R(TA-1)	3,5/4,0	14	28,8/29,65	3	50/48	6	61/65,3	7			
4T(AR-1)	8,1/8,86	9	5,65/8	42	215/150	30	57/59,9	5			
4A(RT-1)	9,2/9,6	4	6,2/9,4	52	215/130	39	60/61,2	2			
Second Irradiation (00.2dpa)											
4R(TA-2)	4,8/6,9	42,7	29,9/62,5	109	51/25	51	61/73,8	21			
4T(AR-2)	9,3/10	7,5	5,7/17	198	215/80	62	57/60,4	6			
4A(RT-2)	8,8/9,3	5,7	5,75/12	109	215/105	51	60/62,4	4			
Third Irradiation (02dpa)											
4R(TA-3)	3,7/5,5	48,8	27.6/108	290	51/15	-70	61/74,4	22			
4T(AR-3)	8,3/9,1	9,6	5.56/26,8	370	215/55	-74	57/59,9	5			
1 A (DT 2)	0 1/10 2	9.5	5 5/26 5	201	245/56	72	60/62 A	4			

Dose dependence of radiation swelling for three orientations of graphite.

15 March 2010, PSI, Switzerland
Dose dependence of elastic Yung module for three orientations of graphite.

15 March 2010, PSI, Switzerland

D,dpa

Dose dependence of thermal expansion coefficient for three orientations of graphite.

D, dpa

15 March 2010, PSI, Switzerland

Temperature dependence of thermal expansion coefficient of AC 150.

15 March 2010, PSI, Switzerland

Generation Rate of Point Defects under Irradiation of Graphite by 5 MeV Carbon Ions at Irradiation Dose 5.10E17cm2

15 March 2010, PSI, Switzerland

Scheme of Irradiation of Graphite Samples

15 March 2010, PSI, Switzerland

Measurements of Radiation Induced Deformation in Graphite Composite Material REC Irradiated by Carbon Ions with the Energy 5 MeV at Irradiation Dose: 3x10 E17 p/см 2

Measurements of Radiation Induced Deformation in Graphite Composite Material AC Irradiated by Carbon Ions with the Energy 5 MeV at Irradiation Dose: 1x10 E17 p/см 2

15 March 2010, PSI, Switzerland

Measurements of Radiation Induced Deformation in Graphite Composite Material R4SSO Irradiated by Carbon Ions with the Energy 5 MeV at Irradiation Dose: 3x10 E17 p/см 2

Measurements of Radiation Induced Deformation in Pyro -Graphite Material Irradiated by Carbon Ions with the Energy 5 MeV at Irradiation Dose: 1x10 E17 р/см 2

Dose Dependence of Radiation Swelling of Graphite Collimator Materials of LHC

15 March 2010, PSI, Switzerland

Dose Dependence of Radiation Swelling of Pyro-graphite Material

15 March 2010, PSI, Switzerland

Future tests for of physical – mechanical properties changes on proton irradiated Graphite Collimator Materials for LHC

The following measurements shall be performed in all three directions of the irradiated C-C graphite materials (where applicable):

- Thermal conductivity (to $\pm 5 \text{ W/m/K}$).
- Electrical resistivity (to $\pm 1 \text{ m}\Omega \text{ m}$).
- Thermal expansion coefficient (to $\pm 10^{-6} / {}^{\circ}C$).
- Mechanical strength (elastic modulus, deformation to rupture, ultimate tensile and compression stress, yield stress).
- Microstructure change with scale (visual analysis).
- Radiation erosion.
- Density and specific heat.
- Dimensions.

Make analysis with TEM, STEM, radiography and mechanical and electrical test equipment on irradiated and non-irradiated samples.

• Make theoretical analysis (dpa levels per sample and help in predictions for the LHC irradiation conditions).

Theoretical modeling of shock wave formation under 450 GeV and 7 TeV proton beams in collimator materials for LHC

> A.I.Ryazanov^{*}, E.V.Semenov^{*}, A.A.Shvets^{*}, A.V.Stepakov^{*}, V.Baranov^{*}, R.Assmann^{**}, A.Ferrary^{**}, R.Schmidt^{**}

*Russian Research Centre "Kurchatov Institute", 123182, Moscow, Kurchatov Sq.1, Russia

**CERN CH-1211 Geneva 23, Switzerland

87

Conclusion

- The results presented here allow to clarify main physical mechanisms of radiation resistance of fission and fusion structural materials using charged particle irradiation on accelerators.
- Using accelerators of charged particles allow to investigate the following physical phenomena in irradiated materials for fission and fusion reactors:
 - Radiation hardening
 - Radiation swelling
 - Irradiation creep
 - Helium and hydrogen embrittlement
 - Fracture processes under irradiation
 - at high irradiation doses and different temperatures.
- The changes of physical-mechanical properties for the following fission and fusion structural materials can be analyzised:
 - Graphite and C-C composites
 - Ceramic materials: SiC, MgO, ZrO2, Al2O3
 - Zr alloys
 - Ferritic / martensitic and austenitic steels
 - ODS materials
 - V alloys
- Using accelerators can help to make chose more radiation resistance materials for fission and fusion reactors during short irradiation time comparing with atomic reactors