



SWISS
PLASMA
CENTER

### **Motivation**

To understand the tolerance of the Bruker strands to bending strain after reaction

#### **Method**

- 1. React strands on steel cylinders with different radii
- 2. Transfer reacted strands to ITER barrels, that have an outer radius of 15 mm
- 3. Measure  $I_{\rm C}$

# Method

There will be a distribution of bending strain through the thickness of the strand. The largest strain values are given by [1]:

$$\varepsilon_{\rm B}(R_{\rm HT}) = \pm \frac{t}{2} \left( \frac{1}{R_{\rm B}} - \frac{1}{R_{\rm HT}} \right)$$

| $arepsilon_{ m B}$ | Heat<br>Treatment<br>Radius |
|--------------------|-----------------------------|
| ± 0.1458%          | 16 mm                       |
| ± 0.2745%          | 17 mm                       |
| ± 0.3888%          | 18 mm                       |
| ± 0.4912%          | 19 mm                       |

$$\varepsilon_{\rm B}$$
 = bending strain

$$R_{\rm B} = 15$$
 mm (ITER barrel radius)

t = 0.7 mm (strand diameter)\*  $R_{\rm HT} =$  heat treatment cylinder radius

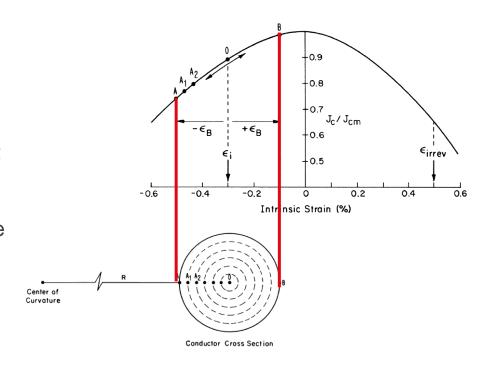
## **Current Status**

• The stainless steel cylinders for reacting the strands have been ordered. Test schedule to follow.

Abstract submitted to ASC.

- [1] See, e.g., G. Ambrosio *et al.*, Study of the React and Wind Technique for a Nb3Sn Common Dipole IEEE TAS **10**:1 (2000)
- \* Filamentary zone diameter is ~0.45 mm

#### **EPFL**


# **Extra: Distributions of Bending Strain**

From a **physics** perspective:

Distributions of bending strain will lead to distributions of  $J_{\mathbb{C}}$  in the strand.

For strands where the interfilamentary current transfer length L is much shorter than the filament twist pitch l (which is *usually* a valid assumption\* for Nb<sub>3</sub>Sn), one can calculate the strand's  $I_C$  using\*\*:

$$\frac{I_{c}}{I_{cm}} = \frac{2}{\pi \varepsilon_{B}^{2}} \int_{-\varepsilon}^{\varepsilon_{B}} (\varepsilon_{B}^{2} - x^{2})^{1/2} \frac{J_{c}(\varepsilon_{i} + x)}{J_{cm}} dx$$



[1] J. W. Ekin, Strain Scaling Law and the Prediction of Uniaxial and Bending Strain Effects in Multiflimentary Superconductors, Filamentary A15 Superconductors (Suenaga & Clark) 1980, p187-203

<sup>\*</sup>The assumption is valid if the Cu matrix RRR is reasonably high \*\*The equation requires knowledge of the axial strain behaviour.