EPFL

EDIPO 2 Staggered racetracks 3D magnetic analysis

X. Sarasola

SWISS PLASMA CENTER February 13th, 2024

EPFL Cable design

- Bruker strand:
 - $j_{c,nc} = 2600 \text{ A/mm}^2 \text{ at } 12 \text{ T and } 4.2 \text{ K}$
 - Cu:nCu = 1.0
- Same cable used for all coils
 - First stage:

• Second stage: 24×(6+1), 0.7 mm

EPFL Magnet design

- 144×144 mm² aperture
- Two sets of flat racetrack coils:
 - 1. Side coils: one pair of coils each made of 6 pancakes: 16 turns/pancake
 - 2. Vertical coils: one pair of coils each made of 4 pancakes: 46 turns/pancake
- Iron parts in red: iron yoke limited to the straight section of the side coils
- 50 mm wide spacers at the coils' ends

EPFL Comparison 3D vs 2D

	3D	2D
l _{op} (85%×l _{ss})	17.410 kA	17.316 kA
B _{center} aperture	15.01 T	15.03 T
B _{coil}	15.04 T	15.07 T
E _{total}	19.7 MJ	11.4 MJ/m

Magnetic 3D model

ANSYS 2 Build 2 PLOT NC	021 R1 1.1 . 1
STEP=1 SUB =1 TIME=1	(AUC)
RSYS=0 PowerGr EFACET=	aphics
SMN =.0 SMX =16	11064 .5334 11064
35.7.	6827 51852 35434
11 12 14	.026 .8618 .6976

Magnetic 2D model

EDIPO, magnetic 2D model

ANSYS 2021 R1 Build 21.1 PLOT NO. 1 NODAL SOLUTION STEP=1 BUM (AVG) RSYS=0 PowerGraphics EFACET=1 AVRES=Mat SNN =.01 SNX =16.55 0 1.83 3.67 5.5 7.33 9.17 11 12.83 14.67 16.5

EPFL **Field in the aperture**

- B field plotted along 4 paths:
 - Path 1 along x axis of the aperture
 - Path 2 along y axis of the aperture
 - Path 3 around a circumference of R=40 mm

(AVG)

14.4148

4.4873 4.559 4.632 4.7045 4.8493 4.9218

4.9942 15.0666

Path 4 along z axis

Magnetic 3D model

EDIPO, magnetic 2D model

(AVG)

14.3732

4.9316

15.091

EDIPO, magnetic 3D model

EDIPO 2: PROGRESS MAGNETIC 3D ANALYSIS

Field along paths 1 and 2

Field along paths 3 and 4

Homogeneity along the z axis:

- 1% drop of the field at $z = \pm 0.331$ m
- 2% drop of the field at z = ±0.411 m

Large end spacers and a limited length of the iron yoke are required to bring the peak field in the coils to the straight section, but reduce the homogeneous field length

EPFL **B** field in the coils

8

EPFL B field in coil 1: straight section vs ends

- 50 mm wide spacers in the coil ends
- The difference in peak field is 0.54 T

Straight section (B_{max} = 15.04 T)

Sarasola

×

EDIPO, magnetic 3D model

EPFL **B field in coil 2: straight section vs ends**

ANSYS 2021 R1

(AVG)

- 50 mm wide spacers in the coil ends
- The difference in peak field is 0.25 T

Straight section ($B_{max} = 14.43 T$)

10

Sarasola

×

EDIPO, magnetic 3D model

EPFL **Magnetostatic 3D analysis**

$I_{00} = V_1 V J A I_{00}$

	l _{op} = 0.85×l _{ss}	I _{op} = I _{max}		÷
Cable layout	24×(6+1), 0.7 mm diam			agne
Number of turns	Side coils: 2×6×16 Vertical coils: 2×4×46			the m
Total number of turns, n _{total}	560			d II
Total area of insulated conductor	52886		mm ²	3 fiel
Operating current, I _{op}	17.41 (85%×I _{ss})	18.00 (87.9%×I _{ss})	kA	
B field in the center of the aperture, ${\rm B}_{\rm 0}$	15.01	15.46	Т	
Peak B field in the coils, B _{peak}	15.04	15.51	Т	ack
Total ampere-turns, I _{total}	9.75	10.08	MAt	d bu
Total magnet stored energy, E _{total}	19.7	21.0	MJ	vindi
Magnet self-inductance, L	129.8		mH	the \
Engineering current density, jeng	184.3	190.6	A/mm ²	ld in
Copper current density, j _{Cu}	538.6	556.8	A/mm ²	3 fie

EDIPO, magnetic 3D model

EPFL Magnetostatic 2D analysis

$I_{on} = 0.85 \times I_{cc}$	
-------------------------------	--

	l _{op} = 0.85×l _{ss}	I _{op} = I _{max}		÷
Cable layout	24×(6+1), 0.7 mm diam			adhe
Number of turns	Side coils: 2×6×16 Vertical coils: 2×4×46			the m
Total number of turns, n _{total}	560			, in
Total area of insulated conductor	52886		mm ²	3 fiel
Operating current, I _{op}	17.316 (85%×I _{ss})	18.00 (88.4%×I _{ss})	kA	
B field in the center of the aperture, ${\rm B_0}$	15.03	15.56	Т	
Peak B field in the coils, B _{peak}	15.07	15.61	Т	ack
Total ampere-turns, I _{total}	9.70	10.08	MAt	d bu
Total magnet stored energy, E _{total}	11.44	12.33	MJ/m	vindi
Magnet self-inductance, L	76.1		mH/m	the v
Engineering current density, j _{eng}	183.4	190.6	A/mm ²	ld in
Copper current density, j _{Cu}	535.7	556.8	A/mm ²	3 fie

EDIPO, magnetic 2D model

EDIPO 2: MAGNETIC 2D ANALYSIS

ANSYS 2021 RI Build 21.1 PLOT NO. 1 NODAL SOLUTION STEP=1 SUB =5 TITME=1 AVERS=MAL AVERS=MAL AVERS=MAL SIMI =.01 SIMI =.01 SIMI =16.55

1.83 3.67 5.5 7.33 9.17 11 12.83 14.67 16.5

EPFL Mechanical 2D analysis

- Three loading steps:
 - Room temperature
 - Cool-down
 - Powering

13

Displacement (magnet)

- Both sets of coils are pulled radially outward:
 - Side coils detach from the test well
 - Vertical coils detach from their poles
- Pole 2 is pulled toward the midplane

IOD = 18.0 kA

14

Sarasola

EPFL Displacement (coil pack)

- Both sets of coils are pulled radially outward:
 - · Side coils detach from the test well
 - Vertical coils detach from their poles
- Pole 2 is pulled toward the midplane

EPFL Von Mises stress in the coils

- Very modest stress after cool-down
- $\sigma_{eq} \le 130$ MPa at $I_{op} = 0.85 \times I_{ss}$
- $\sigma_{eq} \le 139$ MPa at 18.0 kA
- More modest stress in the high field region

'Iop = 0.85*Iss'

ANSYS 2021 R1 Build 21.1 PLOT NO. NODAL SOLUTION STEP=3 SUB =6 TIME=3 SEQV (AVG) PowerGraphics AVRES=Mat DMX =.001702 SMN =884497 =.139E+09 384497 63E+08 625E+08 779E+08 33E+08 09E+09 139E+09

EPFL Max principal stress in the poles

- Within allowable limits at I_{op}=0.85×I_{ss}
 - σ₁ ≤ 259 MPa
- Slightly above limits at I = 18.0 kA
 - σ₁ ≤ 289 MPa

Sarasola

EPFL Max principal stress in the iron pad

- Always within allowable limits:
 - $\sigma_1 \leq 134$ MPa at $I_{op} = 0.85 \times I_{ss}$
 - σ₁ ≤ 148 MPa at 18 kA

ANSYS 2021 R1 Build 21.1 PLOT NO. NODAL SOLUTION STEP=3 SUB =6 TIME=3 S1 (AVG) PowerGraphics AVRES=Mat DMX = .844E-03 SMX = .148E+09 .329E+08 .494E+08 .658E+08 .823E+08 .987E+08 .115E+09 132E+09 .148E+09

18

Sarasola

×

'Iop = 0.85*Iss'

EPFL Max principal stress in the iron yoke

- Always within allowable limits:
 - $\sigma_1 \leq 130$ MPa at $I_{op} = 0.85 \times I_{ss}$
 - σ₁ ≤ 134 MPa at 18 kA

0.85×I_{ss}

Ш

do

EDIPO 2: MAGNETIC 2D ANALYSIS

Cool-down

ANSYS 2021 R1 Build 21.1 PLOT NO.

NODAL SOLUTION STEP=3 SUB =6 TIME=3

(AVG) PowerGraphics

.288E+08 .432E+08

.576E+08 .720E+08

.864E+08

S1

EFACET=1

AVRES=Mat DMX = .00159SMX =.130E+09 .144E+08

EPFL **Stress intensity in the shell**

Always within allowable limits

STEP=2 SUB =8 TIME=2 SINT

EFACET=1

EDIPO 2: MAGNETIC 2D ANALYSIS

Sarasola

EPFL **Von Mises stress in the H-pad**

Always within allowable limits

ANSYS 2021 R1 Build 21.1 PLOT NO. 1 NODAL_SOLUTION

PowerGraphics

DMX = .001545SMN =.781E+0

SMX =.258E+09

19E+09

47E+09

74E+09

202E+09

258E+09

(AVG)

STEP=2 SUB =8 TIME=2 SEQV

EFACET=1

AVRES=Mat

ANSYS 2021 R1 Build 21.1

(AVG) PowerGraphics EFACET=1

PLOT NO. NODAL SOLUTION STEP=3 SUB =6 TIME=3

AVRES=Mat

=.328E+09 138E+08 .487E+08 836E-

.118E+09

.188E+09 223E+09 .258E+09 .293E+09 328E+09

SEQV

SMX

Cool-down

EDIPO 2: MAGNETIC 2D ANALYSIS

Cool-down

Sarasola

EPFL Stress intensity in the steel plates

 The high stress in the steel plate 1 call for the use of a high strength austenitic steel

EDIPO 2: MAGNETIC 2D ANALYSIS

EPFL Gap between test well and side coils

- Between the test well and side coils:
 - gap \leq 0.9 mm at I_{op} = 0.85×I_{ss}
 - gap ≤ 0.9 mm at 18 kA

'Iop = 0.85*Iss'

Sarasola

EPFL Gap between pole 2 and vertical coils

- Between pole 2 and vertical coils:
 - gap \leq 1.6 mm at I_{op} = 0.85×I_{ss}
 - gap ≤ 1.7 mm at 18 kA

Cool-down

18.0 kA

Ш

op

EPFL Gap between steel plate 1 and test well

- The steel plate 1 bends, but never touches the test well
- The gap is always higher than 1.4 mm

Cool-down

25

×

ANSYS 2021 R1 Build 21.1 PLOT NO. 1

EPFL **Stress intensity in the test well**

Cool-down

ANSYS 2021 R1 Build 21.1 PLOT NO.