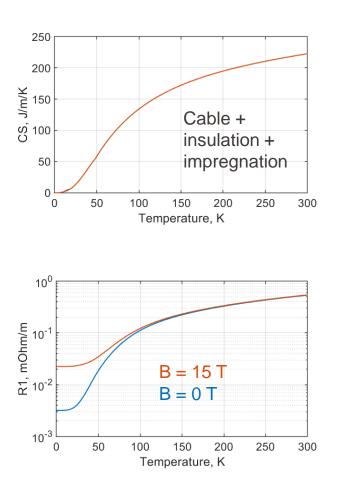

EPFL Quench analysis

Conductor layout:

Conductor cross-section	94.4 mm ²
Cable	64.7 mm ² (68.5%)
Copper	32.3 mm ² (34.2%)
Noncopper	32.3 mm ² (34.2%)
Impregnation	18.7 mm² (11.8%)
Insulation	11.1 mm ² (19.8%)

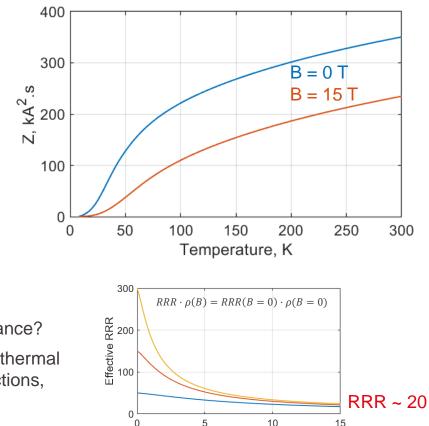
Strand diameter	0.7 mm
Copper-noncopper ratio	1
RRR	150
Number of strands	24*7 = 168
Total width	24.34 mm
Total height	3.88 mm
Insulation thickness	0.2 mm


Operating current	18 kA
J eng	182 A/mm ²
J cu	533 A/mm ²
Inductance	0.13 H
Stored energy	21.1 MJ
Discharge voltage (max)	1 kV
Time constant τ	2.34 s
Delay time t _d	16 ms

EPFL Quench analysis

Adiabatic analysis:

 $C(T)S\frac{\partial T}{\partial t} = I^2 R_1(T,B) \text{ [W/m]}$


- Conductor cross-section isothermal
- Current flow in copper
- Size of normal zone to reach 100 mV at 18 kA:
 1.7 m (0 T), 0.2 m (15 T)
- T(t = 0) = 8 K: $T_{max} = 397$ K at B = 0 T constant $T_{max} = 1090$ K at B = 15 T constant $T_{max} = 1060$ K for B = k x I
- I = 17 kA, V = 1.5 kV, tau = 1.47 s: $T_{max} = 100$ K at B = 0 T constant $T_{max} = 262$ K at B = 15 T constant $T_{max} = 243$ K for B = k x I

EPFL Quench analysis

Constant B:

- $Z(T) = \int_{T_0}^T \frac{C(x)S}{R_1(x,B)} dx$
- Quench integral: $\int I^2 dt = I^2 (t_d + \tau/2) \approx EI/V = LI^3/2V$ = 384 kA².s at 18 kA, 1.0 kV = 218 kA².s at 17 kA, 1.5 kV

Magnetic field, T

- Cross-check the actual effect of magnetoresistance?
- 3-D model to be prepared to quantify impact of thermal conductivity in transverse and longitudinal directions, though strong impact on Tmax is not expected