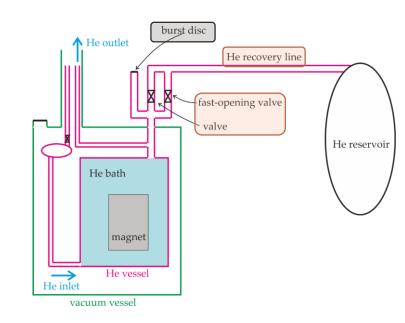


EDIPO 2 – Helium release system / cryogenic circuit

H. Bajas

Swiss
Plasma
Center

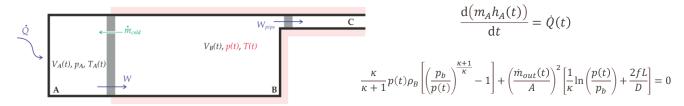

13.02.2024

EPFL

Updates from my side

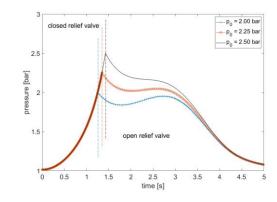
н. Бајаѕ

- Take a first view on H. Bajas's reports on:
 - He vessel pressure relief safety system
 - Avoid critical pressure built-up due to sudden Helium boil-off
 - The burst disk
 - He vessel pressure relief system in normal condition
 - Recuperate Helium in normal steady condition and during quench
 - The Helium outlet
 - The valves and recovery lines



Updates from my side

- He vessel pressure relief safety system
 - Helium initial conditions:
 - $p_{op} = 1.01$ bar and $T_{op} = 4.225$ K
 - The choice of the Worse Case Scenario:
 - "Unprotected quench" (dump resistor mis-fired) OR "Loss of vacuum"
 - · Heat load determination
 - Input
 - for "unprotected quench":
 - Magnet Current and Power Supply Voltage: $I_{op} = 17.1 \text{ kA}$ and $U_{ps max} = 5 \text{ V}$
 - Heat power: $\dot{Q} = I_{op}V_{PS,max} = 85 \text{ kW}$
 - · for "Loss of vacuum":
 - Heat power per unit of surface: $Q' = 0.6 \text{ W cm}^{-2}$, $A_{vessel} \approx 14.24 \text{ m}^2$
 - Heat power: $\dot{Q} \approx 85.44 \text{ kW}$
 - The choice of the Burst Disk
 - The dimensioning of the disk using:
 - the maximum allowable working pressure ($p_s \sim p_{set} = 3 \text{ bar}$)
 - 3.00 bar and 5.9 K
 - the cross-section, A ~1900 mm²
 - diameter 55 mm, DN65)



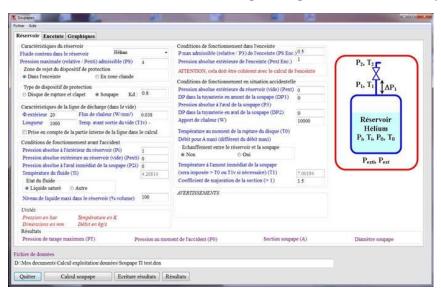
- Valves and recovery lines
 - Three-volume model for the thermodynamic description of the system soon after opening the pressure relief valve.

- Pressure rise for closed then open valve
 - Dimensioning the pipe aperture and length
 - For various valve opening pressure
 - D = 55.0 mm, L = 12.5 m

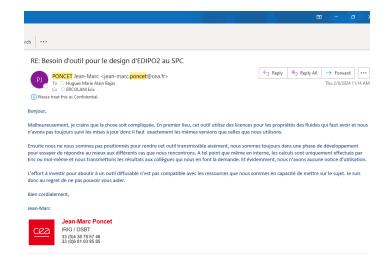
Quite dependent on the way the magnet stored energy (0.5*L*l²) is deposited in the bath during a quench $\dot{Q}(t)$

Swiss
Plasma
Center

NB: Importance of valve opening proper regulation (PID)



Standard ISO 21013-3


Swiss
Plasma
Center

Exchange with CEA

Exisiting design software for cryogenics safety system

Yes.... But no ⊗

Conclusion

 The report from Roberto are clear and are a good start for the dimensioning of the Burst disk and the Cryo-line.

 Need to get more familiar with literature and the tools we have at SPC for cryostat dimensioning.