RIUMF

Production and Application of Radiolanthanides at TRIUMF

Paul Schaffer, PhD

Director, Life Sciences, TRIUMF Assoc. Prof., Radiology, UBC Adj. Prof. Chemistry, SFU

PRISMAP Workshop 2024-09-03

- I am a full-time employee of TRIUMF
- I am compensated by ARTMS, Inc. as Chief Technology Officer
- I am a listed inventor on patents in technology licensed to ARTMS

• Topics for today's presentation:

Background: TRIUMF, Infrastructure and Capabilities

Discussion: Radiolanthanide work @ TRIUMF (Production, Radiochemistry, Radiopharmaceutical Development)

Summary, Conclusions

TRIUMF's Research Programme

TRIUMF's work addresses the most compelling challenges in contemporary science and connects fundamental scientific research through to commercialisation.

TRIUMF is a hub of excellence centred on a **core of expertise** in accelerator technology, detector development and isotope research.

From supporting Nobel-prize winning research to delivering lifesaving breakthroughs in health and technology, **TRIUMF is a major asset in Canada's high-tech landscape delivering economic and societal benefit to Canadians.**

TRIUMF Life Sciences focuses on advancing accelerator-based technology for the development of isotopes that can improve life

- Six (soon to be seven) cyclotrons & two linear accelerators on site
- Over 1-kilometer of beamlines; accelerating sub-atomic and rareisotope beams
- Users and collaborators from over 40 countries
- Over 1000 visitors per year (2019)

- Six (soon to be seven) H⁻ medical cyclotrons:
 - Energy range: 13 to 520 MeV
 - Intensity:
 - 25 µA @ 13 MeV
 - ~1mA @ 30 MeV (BWXT)
 - 350 µA @ 520 MeV
 - Isotope production
 - Radiochemistry
 - Proton Therapy
 - Bio- β NMR
- Other drivers:
 - ARIEL, ISAC

- Radiolanthanide work:
 - ISAC: ^{149,155}Tb via ISOL
 TR13:
 - ^{nat}Ba(p,x)¹³²La
 - ¹⁶⁵Ho(p,n)¹⁶⁵Er
 - natGd(p,x)¹⁵⁵Tb
 - outsource: ¹⁶¹Tb (SCK)
 - TR24/PETTrace: future
 - Radiochemistry
 - Purification
 - Chelate development
 - In vitro testing
 - In vivo testing
 - UBC Centre for Comparative Medicine

- Radiolanthanide work:
 - ISAC: ^{149,155}Tb via ISOL
 - TR13:
 - ^{nat}Ba(p,x)¹³²La
 - ¹⁶⁵Ho(p,n)¹⁶⁵Er
 - natGd(p,x)¹⁵⁵Tb
 - outsource: ¹⁶¹Tb (SCK)
 - TR24/PETTrace: future
 - Radiochemistry
 - Purification
 - Chelate development
 - In vitro testing
 - In vivo testing
 - UBC Centre for Comparative Medicine

- Radiolanthanide work:
 - ISAC: ^{149,155}Tb via ISOL
 - TR13:
 - ^{nat}Ba(p,x)¹³²La
 - ¹⁶⁵Ho(p,n)¹⁶⁵Er
 - natGd(p,x)¹⁵⁵Tb
 - outsource: ¹⁶¹Tb (SCK)
 - TR24/PETTrace: future
 - Radiochemistry
 - Purification
 - Chelate development
 - In vitro testing
 - In vivo testing
 - UBC Centre for Comparative Medicine

- Radiolanthanide work:
 - ISAC: ^{149,155}Tb via ISOL
 - TR13:
 - ^{nat}Ba(p,x)¹³²La
 - ¹⁶⁵Ho(p,n)¹⁶⁵Er
 - natGd(p,x)¹⁵⁵Tb
 - outsource: ¹⁶¹Tb (SCK)
 - TR24/PETTrace: future
 - Radiochemistry
 - Purification
 - Chelate development
 - In vitro testing
 - In vivo testing
 - UBC Centre for Comparative Medicine

Life Scientists at TRIUMF

Production (at ISAC-ISOL)

Terbium radioisotopes

- Tb has four medically relevant isotopes, covering all major nuclear medicine modalities
- Enable theranostics with chemically identical radiopharmaceuticals
- For most, ¹⁵⁵Tb and ¹⁶¹Tb are more available

TRIUMF ISAC-ISOL

Isotope Separator and Accelerator (ISAC)

Isotope Separation On-line (ISOL)

18

Isotope Separator and Accelerator (ISAC)

Isotope Separation On-line (ISOL) of A/q = 155

Yield estimates based on GEANT4 simulations.

Produced Isotope	Half-life	Production Rate [isotopes/sec]	Yield (after 5 day cool down)
^{155g} Sm	22.18 min	3.49x10 ⁶	n/a
^{155g} Eu	4.753 y	6.44x10 ⁷	5.09x10 ¹¹ atoms (2.35 kBq)
^{155g} Gd	Stable	1.11x10 ⁹	~8.78x10 ¹² atoms
^{155g} Tb	5.32 d	1.05x10 ¹⁰	~2.45x10 ¹⁴ atoms (370 MBq)
^{155g} Dy	9.9 h	5.07x10 ¹⁰	n/a
^{155g} Ho	48 min	1.33x10 ¹¹	n/a
^{155g} Er	5.3 min	1.77x10 ¹¹	n/a
^{155g} Tm	21.6 s	6.72x10 ¹⁰	n/a
^{155g} Yb	1.79 s	4.46x10 ⁹	n/a
^{155g} Lu	68 ms	1.55x10 ⁸	n/a
^{155g} Hf	843 ms	7.00x10⁵	n/a

Radiochemistry

Designing chelators capable of binding emerging isotopes of clinical importance

- Various chelates have been developed to enable radioactinide and radiolanthanide complexation for targeted radiopharmaceutical development
- High-denticity, acyclic and cyclic chelators

Designing chelators capable of binding emerging isotopes of clinical importance

- Commercially-available chelates may not exhibit chemical behaviour needed for widespread use, on-site formulation of radiopharmaceuticals (temperature, pH, concentration)
- High-denticity chelator for large metals
- Understand selectivity for various isotopes
- Enable kit-like formulation
- Enable multi-isotope incorporation (i.e. theranostic applications)

Ideal properties:

- Fast complexation
- Mild conditions
- Selectivity/versatility
- High thermodynamic stability
- High kinetic inertness
- High molar activity

H Yang, et. al. Chem. Eur. J. 2020, 26, 11435

H₃Trica Chelate

Concentration-dependent radiolabeling studies of H_3 trica and DOTA with [¹⁵⁵Tb]Tb³⁺, and [¹⁶¹Tb]Tb³⁺, (100 kBq) in NH₄OAc (0.5 M, pH 6).**

Conformation 'B'

Radiopharmaceutical Development

[^{155/161}Tb]Tb-crown-αMSH

crown-αMSH

Concentration-dependent radiolabeling studies with:

- [¹⁵⁵Tb]Tb³⁺ (100 kBq) or [¹⁶¹Tb]Tb³⁺ (100 kBq),
- DOTA (90 °C, 30 min) and crown-αMSH (RT, 15 min)
- NH₄OAc (0.5 M, pH 6.0)

Credits to: Hua Yang, Luke Wharton, Peter Kunz, Michiel Van de Voorde *[¹⁶¹Tb] supplied by SCK CEN

L Wharton et al. Nuc. Med. Biol 2024; 136-137, 108925

[^{155/161}Tb]Tb-crown-αMSH

HPLC chromatograms for [155/161/natTb]Tb-crown-αMSH

Biodistribution studies in male C57BL/6J mice bearing B16-F10 tumors performed at 2 h post administration

Credits to: Hua Yang, Luke Wharton, Peter Kunz, Michiel Van de Voorde *[¹⁶¹Tb] supplied by SCK CEN

L Wharton et al. Nuc. Med. Biol 2024; 136-137, 108925

Quantitative SPECT with [^{155/161}Tb]Tb-crown-αMSH

SPECT imaging in C57BL/6J mice bearing B16-F10 melanoma tumors at 2 h post administration

[¹⁵⁵Tb]Tb-crown-αMSH

	[¹⁵⁵ Tb]Tb-crown- αMSH		[¹⁶¹ Tb]Tb-crown- αMSH	
	SPECT %ID/g	BioD %ID/g	SPECT %ID/g	BioD %ID/g
Tumor	8.2	9.3	3.3	3.3
Kidney (L)	2.9	4.0	6.5	6.2
Kidney (R)	3.6	4.0	6.0	0.2
Bladder	18.9	21.8	109.8	136.8

[¹⁵⁵Tb]Tb-crown-αMSH (~196 kBq/subject, 21.7 MBq/nmol) [161Tb]Tb-crown-aMSH (~3.30 MBq/subject, 39.6 MBq/nmol)

Biodistribution of [155Tb]- and [161Tb]Tb-crown-TATE

• [¹⁵⁵Tb]Tb-crown-TATE was prepared with high molar activity and radiochemical purity.

- Radiolabeling conditions:
 - 37 °C, 30 min, NH₄OAc (0.5 M, pH 6.0)
- Molar activity: 9.74 MBq/nmol
- Administered dose: 330 kBq/animal

 Biodistribution in NRG mice bearing AR42J tumours; 2 hrs p.i. ~175kBq [¹⁵⁵Tb]- and ~850 kBq [¹⁶¹Tb]Tb-crown-TATE.

Credits to: H Yang, L Wharton, P Kunz, M Van de Voorde *[¹⁶¹Tb] supplied by SCK CEN

L Wharton et al. Molecules 2023; 28, 3155

Longitudinal [155Tb] SPECT/CT Imaging

in male NRG mice bearing AR42J tumour xenografts on left-shoulder.

Credits to: H Yang, L Wharton, D Zhang. M Osooly, C Rodríguez-Rodríguez

Unpublished results

Terbium-149

- Overview:
 - ¹⁴⁹Tb ($t_{1/2}$ = 4.12 h) is a short-lived α and β ⁺emitter; potential for theranostics involving alphatherapy and PET imaging (dosimetry).

Goals:

- First-time production of ¹⁴⁹Tb at TRIUMF using ISAC/ISOL.
- Isolate and quantify activity.
- Perform radiolabelling studies with crown-TATE.
- Undertake preliminary biodistribution and PET imaging at BCCA.

Unpublished results

Terbium-149

• Goals:

- First-time production of ¹⁴⁹Tb at TRIUMF using ISAC/ISOL.
 - 4 h implantation time, 30 min cool down.
 - 2 production runs.
 - 680 μ Sv/hr (shielded).
- \checkmark Isolate and quantify activity.
 - ~65 MBq ^{149}Tb in 87 μL water.
- ✓ Perform radiolabelling studies with crown-TATE.
 - 100% RCY (RT, 30 min).
 - Molar activity: 53.6 MBq/nmol.
- Undertake preliminary biodistribution and PET imaging at BCCA.
 - No prior calibration of PET scanner or gamma counter.
 - Too much activity injected per animal (10 MBq/animal).
 - Wrong energy windows for gamma counting.

¹⁶⁵Ho(p,n)¹⁶⁵Er at 13 MeV Cyclotron

- Production via low-energy (13 MeV) cyclotron
- ¹⁶⁵Ho(p,n)¹⁶⁵Er; ¹⁶⁵Ho is monoisotopic, available
- Pure Auger e⁻ emitter
- Therapy potential: 7 Auger e⁻ per decay
- Preclinical SPECT imaging: 47.1 keV (59.4%) and 54.3 keV (14.3%)

¹⁶⁵Ho Target Production

- 200 mg ¹⁶⁵Ho
- 250 mg.cm⁻² or 0.29 mm of thickness
- 8 MeV exit energy
- 25 MBq·µA⁻¹h⁻¹

B. Saeedi Saghez, H. Yang, V Radchenko Inorganic Chemistry, 2024,63(12), 5330–5340.

¹⁶⁵Er Purification

¹⁶⁵Er Radiolabeling

- 0.5 M NH_4OAc buffer (pH 5.5)
- 500 kBq ¹⁶⁵Er at EoS
- 50 µL total volume

¹⁶⁵Er-PSMA-617 SPECT and *ex vivo* Biodistribution

MIPs for LNCaP tumor bearing mice injected with ¹⁶⁵Er-PSMA-617 (21 MBq, 0.2 nmol)

Time (h)

B. Saeedi Saghez, H. Yang, Unpublished Data

Radiolanthanum as an ²²⁵Ac Surrogate

Sealed coin target (In wire) to prevent oxidation during transport, installation, removal

2-hour irradiation at 10 μ A (n= 3): ¹³²La = 4.9 ± 0.8 MBq ¹³⁵La = 112.8 ± 18.3 MBq

Proposed La Purification Method

La Elution Profile

Credits to: B McNeil, C Ramogida, E Kurakina, V Radchenko

¹³⁵La Radiolabeling

- ISAC-ISOL can produce certain isotopes in sufficient yield and purity to allow radiochemistry and radiopharmaceutical development
 - Important for development of isotopes such as ¹⁴⁹Tb
- With advancements in solid-target technology, low energy cyclotrons can produce an increasing repertoire of radiolanoids (and radioactinides)
- Macrocyclic chelates are proving to be powerful enablers of radiolanthanides (and radioactinides)
- Several radiolanthanide radiopharmaceuticals were produced and used as imaging- and/or therapy tools for melanoma and neuroendocrine tumor models.
- Applications in other tumour models, and therapy response studies are ongoing

Aging Infrastructure: Replacing TRIUMF's Main Beamline

Objective: replace, enhance functionality of BL1A **Funding:** 2025 Cdn Foundation for Innovation - Infrastructure Fund **Next Step:** Awaiting Decision

New Infrastructure: Institute for Advanced Medical Isotopes (IAMI)

New >\$70M facility Building substantially complete TR24 installed PETTrace procurement underway 6 GMP-capable hot labs 1 standard chemistry labs 2 QC laboratories Quarantined storage 2 floors of office space Hot Commissioning 2025

Acknowledgements

TRIUMF (Research)

Desiree Fiaccabrino Cornelia Hoehr Aidan Ingham Helena Koniar Peter Kunz Jens Lassen **Brooke McNeil** Scott McNeil Gokce Engudar Zheliang Yuan Valery Radchenko Caterina Ramogida Luke Wharton John Wong Hua Yang **Diduo Zhang** Cheng Cheng Zhang

Life Sciences Ops team TR13 Ops team ISAC Ops team

BC Cancer

Nadine Colpo Helen Merkens François Bénard

UBC

Cristina Rodriguez-Rodriguez Maryam Osooly Chris Orvig

BC CAN

CER

Canadä

Canada Foundation for Innovation Fondation canadienne pour l'innovation

Canadian Cancer Society

Thank you Merci

www.triumf.ca Follow us @TRIUMFLab

