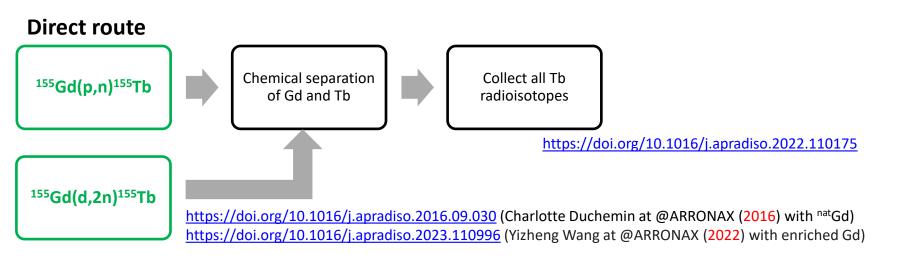
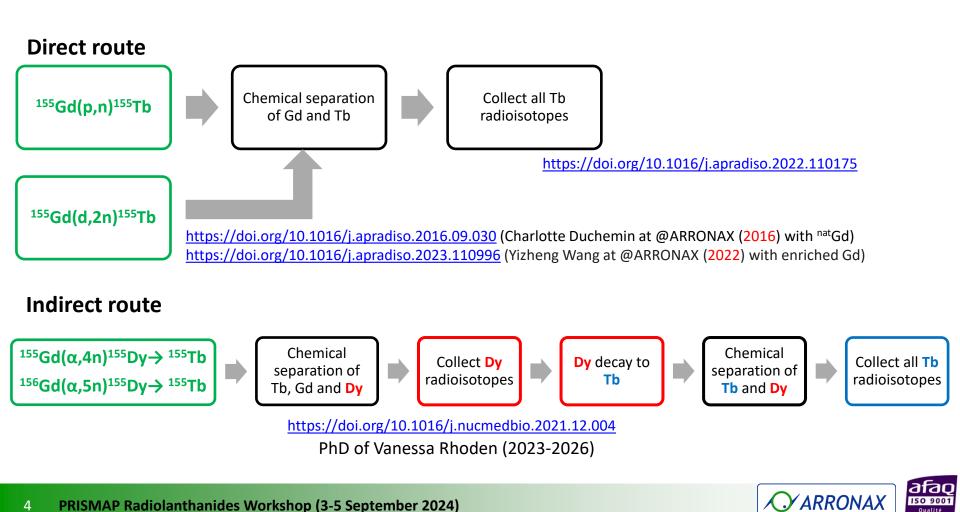
Studies of different production paths for ¹⁵⁵Tb using Gd targets : from target manufacturing to Tb/Gd separation

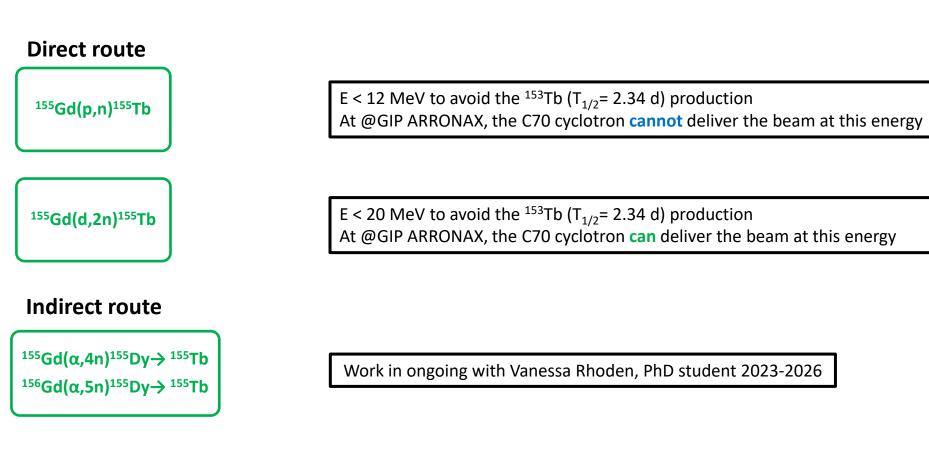
Nadia Audouin^c, Charlotte Duchemin^{b,c}, Roberto Formento-Cavaier^b, Arnaud Guertin^b, Etienne Nigron^{b,c}, Férid Haddad^{b,c}, Nathalie Michel^b, **Thomas Sounalet^b**, Vanessa Rhoden^b and Yizheng Wang^{b,c}

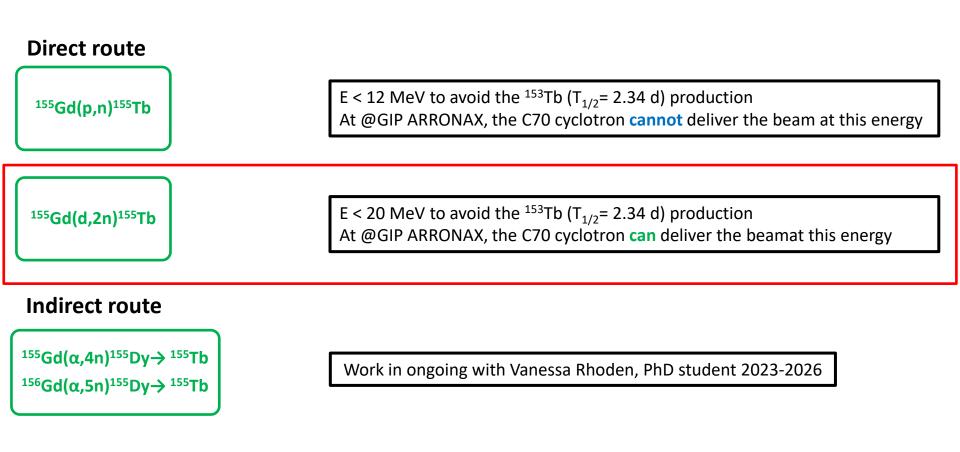
^a CERN-MEDICIS
 ^b Subatech, UMR 6457, IMT Atlantique, CNRS/IN2P3
 ^c GIP ARRONAX

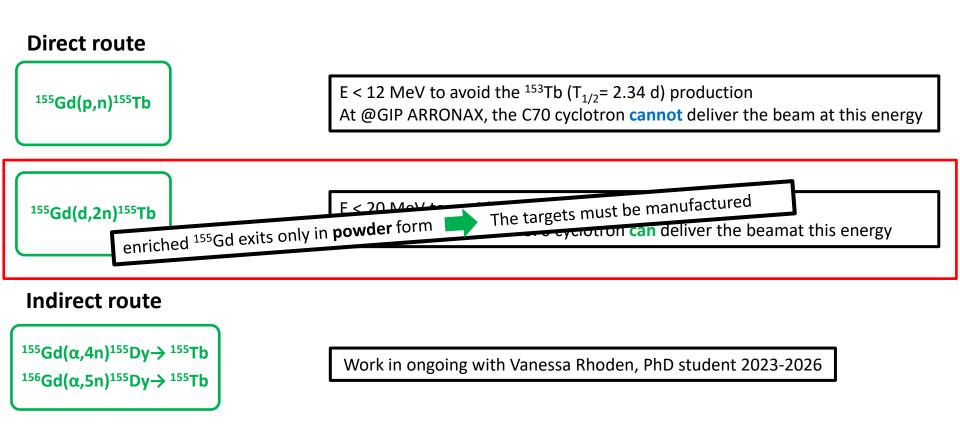


I am hard of hearing,


SO


in some slides, I will read the text to ensure I am well understood, as my accent is very strong.

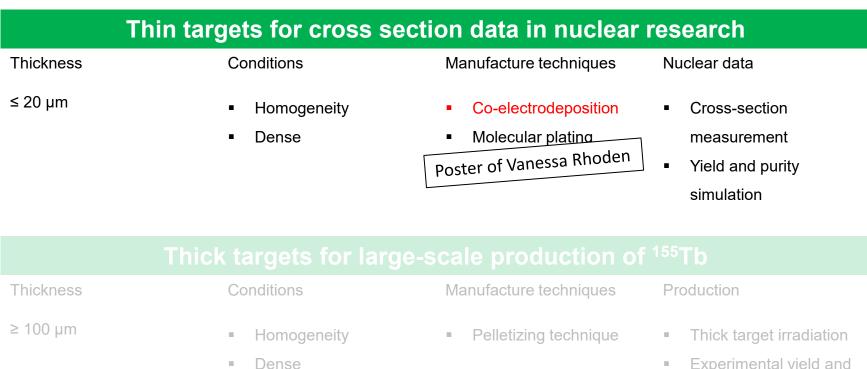




🔿 ARRONAX

Thin targets for cross section data in nuclear research					
Thickness	Conditions	Manufacture techniques	Nuclear data		
≤ 20 µm	HomogeneityDense	Co-electrodepositionMolecular plating	 Cross section measurement Yield and purity simulation 		

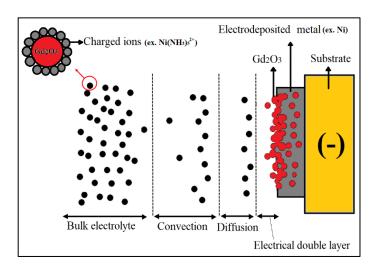
Thick targets for large-scale production of ¹⁵⁵ Tb					
Thickness	Conditions	Manufacture techniques	Production		
≥ 100 µm	HomogeneityDense	 Pelletizing technique 	 Thick target irradiation Experimental yield and purity 		

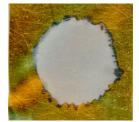

 Chemical separations with LN resin

Th	in targets for cross s	ection data in nuclear	research
Thickness	Conditions	Manufacture techniques	Nuclear data
≤ 20 µm	HomogeneityDense	Co-electrodepositionMolecular plating	 Cross section measurement Yield and purity simulation
	Thick targets for larg	ge-scale production o	
Thickness	Conditions	Manufacture techniques	Production
≥ 100 µm	HomogeneityDense	 Pelletizing technique 	 Thick target irradiation Experimental yield and purity

 Chemical separations with LN resin

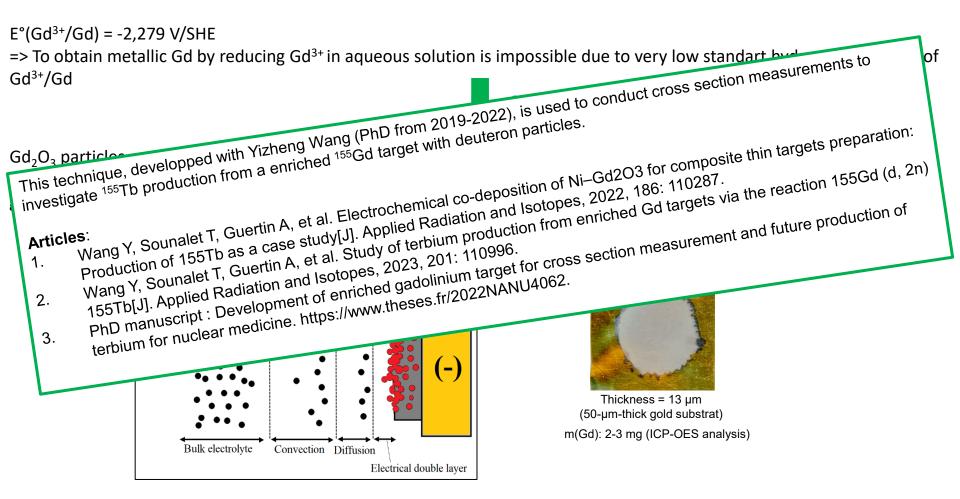
- Experimental yield and purity
- Chemical separations with LN resin



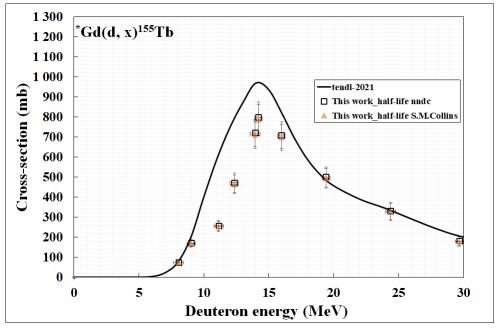

 $E^{\circ}(Gd^{3+}/Gd) = -2,279 \text{ V/SHE}$

=> To obtain metallic Gd by reducing Gd³⁺ in aqueous solution is impossible due to very low standart hydrogen electrode of Gd³⁺/Gd

Co-electrodeposition technique


 Gd_2O_3 particles are trapped in Ni deposit by electrodeposition technique. This method has been used to prepare targets to measure cross sections of ¹⁵⁵Gd(d,2n)¹⁵⁵Tb nuclear reaction. To prevent the dissolution of Gd_2O_3 particles, the pH of the solution must be **greater than 7**. The solution used in our experiments is **ammoniacal** solution.

Thickness = 13 μm (50-μm-thick gold substrat) m(Gd): 2-3 mg (ICP-OES analysis)



Co-electrodeposition

cross section measurements: irradiation on ¹⁵⁵Gd with deuteron particles

(direct route)

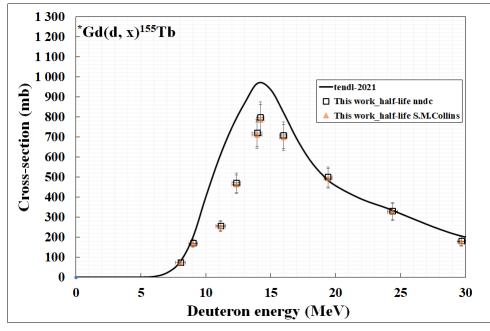
Cross section measurements: ¹⁵⁵Tb

TENDL-2021 overestimates values at lower energies until 20 MeV and remains consistent at higher energies.

Isotope	152	154	155	156	157	158	160
Enrichment (%)	-	-	92.80	5.7	0.8	0.5	0.2

From Trace Sciences International

¹⁵⁵Gd enrichment = 92.80%


(noted as *Gd)

¹⁵⁶Gd purity = 5.7%

Co-electrodeposition

cross section measurements: irradiation on ¹⁵⁵Gd with deuteron particles

(direct route)

Cross section measurements: ¹⁵⁵Tb

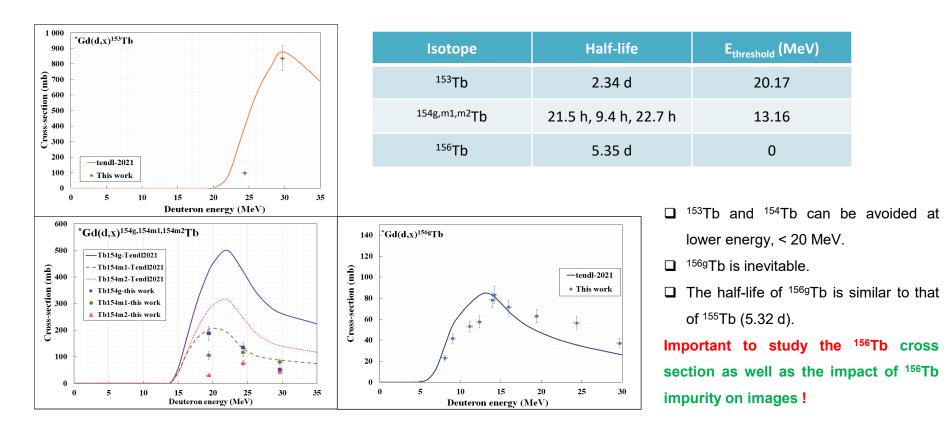
TENDL-2021 overestimates values at lower energies until 20 MeV and remains consistent at higher energies.

Before 13 MeV, the ¹⁵⁵Tb production was produced from ¹⁵⁵Gd(d,2n)¹⁵⁵Tb.

Isotopes	¹⁵⁵ Gd	¹⁵⁶ Gd	¹⁵⁷ Gd	¹⁵⁸ Gd
E _{threshold} (MeV)	3.88	12.52	18.96	27.00

From 13 MeV to 19 MeV, ¹⁵⁵Gd and ¹⁵⁶Gd contributed to produce ¹⁵⁵Tb (maximum cross section = 800 mb at 14.5 MeV

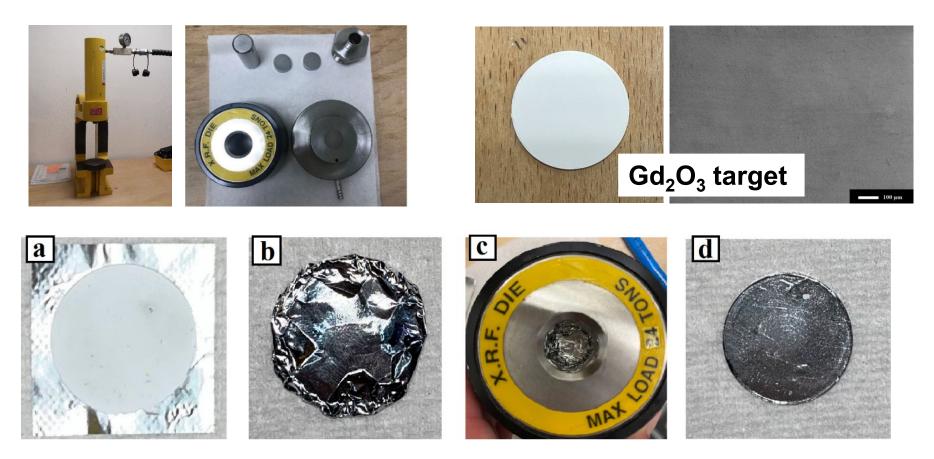
Isotope	152	154	155	156	157	158	160
Enrichment (%)	-		92.80	5.7	0.8	0.5	0.2


From Trace Sciences International

¹⁵⁵Gd enrichment = 92.80% (noted as *Gd) ¹⁵⁶Gd purity = 5.7%

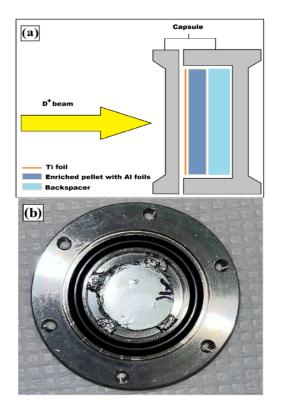
Co-electrodeposition

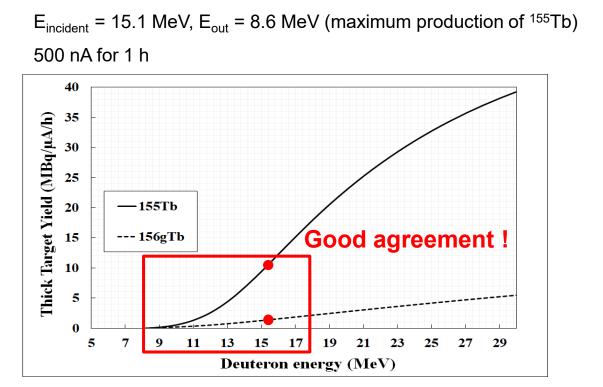
cross section measurements: irradiation on ¹⁵⁵Gd with deuteron particles (direct route)


	Thin targets for new	v data nuclear resea	
Thickness	Conditions	Manufacture techniques	Nuclear data
≤ 20 µm	 Homogeneity 	 Co-electrodeposition 	 Cross-section
	Dense	 Molecular plating 	measurement
			Yield and purity
			simulation

Thick targets for large-scale production of ¹⁵⁵ Tb					
Thickness	Conditions	Manufacture techniques	Production		
≥ 100 µm	HomogeneityDense	 Pelletizing technique 	 Thick target irradiation Experimental yield and purity 		

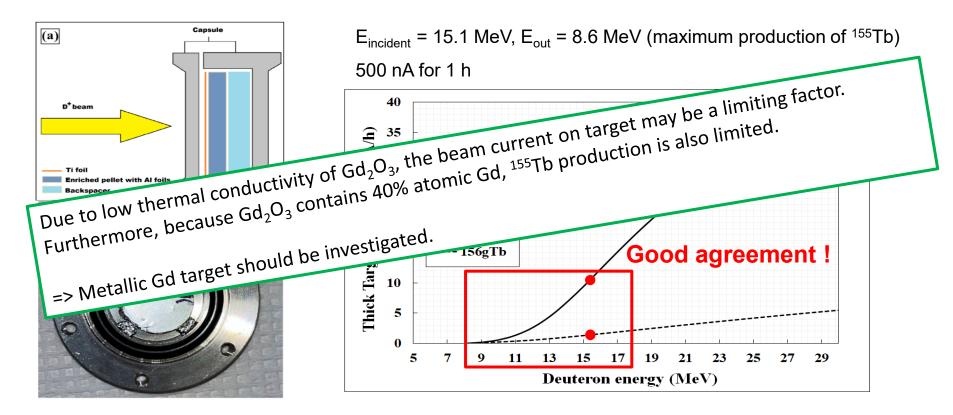
 Chemical separations with LN resin


Thick targets for large-scale production of ¹⁵⁵Tb pelletizing technique



Mass = 0.6 g, diameter = 2 cm, thickness = **390** μ m

Thick targets for large-scale production of ¹⁵⁵Tb pelletizing technique


Experimental yield:

- ¹⁵⁵Tb: 10.2 ± 0.7 MBq/μA/h
- ¹⁵⁶Tb: 1.3 ± 0.1 MBq/μA/h

Purity of ¹⁵⁵Tb: Experiment: 88% (9 d after EOB) Estimation: 89% (9 d after EOB)

Thick targets for large-scale production of ¹⁵⁵Tb pelletizing technique

Experimental yield:

- ¹⁵⁵Tb: 10.2 ± 0.7 MBq/µA/h
- ¹⁵⁶Tb: 1.3 ± 0.1 MBq/µA/h

Purity of ¹⁵⁵Tb: Experiment: 88% (9 d after EOB) Estimation: 89% (9 d after EOB)

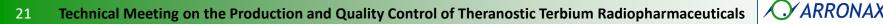
Conclusion

✓ We are able to manufacture thin targets for nuclear research : co-electrodeposition and molecular plating (Poster of Vanessa Rhoden)

✓ We are able to manufacture thick targets for production : a pellet of Gd_2O_3 wrapped with Al. Perspective : obtain a metallic Gd -> molten salts technique?

✓ Cross section measurements have been studied with deuteron as particles
 Perspective : measure cross section with alpha particles (Vanessa Rhoden's PhD thesis).

 Knowing the values of cross section measurements allows us to determine which deuteron energy is optimal to produce ¹⁵⁵Tb with *good* radioisotopic purity (90% in this work) : less than 20 MeV to avoid producing ¹⁵³Tb.


- □ Proton or deuteron irradiation? It depends on the acceptable value of ¹⁵⁶Tb.
- \Box The radioisotopic purity of ¹⁵⁵Tb depends on the purity of ¹⁵⁵Gd.
- □ Alpha irradiation is interesting; however, only few cyclotrons can deliver this particle.

Publications

For 1O years, we are studying on production of Tb radionuclides (Tb-149, Tb-155). Below are the peer-reviewed articles that we have published :

- Deuteron induced Tb-155 production, a theranostic isotope for SPECT imaging and auger therapy, Applied Radiation and Isotopes 118 (2016) 281–289, Charlotte Duchemin.
- Terbium Radionuclides for Theranostics Applications: A Focus On MEDICIS-PROMED, Physics Procedia 90 (2017) 157 – 163, Roberto Formento-Cavaier.
- New excitation functions for proton induced reactions on natural gadolinium up to 70 MeV with focus on 149Tb production, Nuclear Inst. and Methods in Physics Research B 478 (2020) 174–181, Roberto Formento-Cavaier.
- Electrochemical co-deposition of Ni–Gd₂O₃ for composite thin targets preparation: Production of ¹⁵⁵Tb as a case study, Applied Radiation and Isotopes 186 (2022) 110287, Yizheng Wang.
- Study of terbium production from enriched Gd targets via the reaction ¹⁵⁵Gd(d,2n)¹⁵⁵Tb, Applied Radiation and Isotopes 201 (2023) 110996, Yizheng Wang.

Thank you for your attention

The ARRONAX cyclotron is a project promoted by the Regional Council of Pays de la Loire financed by local authorities, the French government and the European Union.

This work has been supported in part by a grant from the French National Agency for Research called "Investissements d'Avenir", Equipex ArronaxPlus n°ANR-11-EQPX-0004 and labex IRON n°ANR-11-LABX-18-01.

