Mass separation of stable and radioactive lanthanide isotopes

Ulli Köster Institut Laue-Langevin & UGA Grenoble, France

Radiolanthanides Workshop, 3-5 September 2024 🌑 PSI

Disclaimer

No relation to the Tinner family nor their customers.

Distillation method

boiling points $H_2^{16}O$ 100.0 °C $D_2^{16}O$ 101.4 °C

G.N. Lewis and R.E. Cornell, JACS 1933;55:2179. J.R. Huffman and H.C. Urey, Indus & Eng Chem 1937;29:483.

It's time to raise a glass (of heavy water) to a longer life

Elixir of life: 'Heavy' water could increase your lifespan by 10 years, say scientists

Dr de Grey, a 'bio-gerontologist' who leads the Methuselah Foundation, a charity which aims for 'the defeat of age-related disease and the indefinite extension of the healthy human lifespan', said the research was 'extremely promising'.

Update

TRENDS in Biotechnology Vol.25 No.9

Research Focus

Heavy isotopes to avert ageing

Vadim V. Demidov

Center for Advanced Biotechnology, Boston University, 36 Cummington S

Politics Obits	s Educat	tion	Earth	Science	Defenc	e Health	
Science News	Space	Ni	ght Sky	Roger Hig	ghfield	Dinosaurs	
HOME » SCIENCE » SCIENCE NEWS							

'Heavy water' could help us live longer

Deuterium depleted water

Anti-aging effects of deuterium depletion on Mn-induced toxicity in a *C. elegans* model

Daiana Silva Ávila^{a, c}, Gábor Somlyai^b, Ildikó Somlyai^b, Michael Aschner^{c,d,e,*}

^a Universidade Federal do Pampa, BR 472 Km 585, CEP 97500-970, Uruguaiana, RS, Brazil

^b HYD LLC for Cancer Research and Drug Development, Furj u.2., Budapest H-1124, Hungary

^c Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA

^d Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA

* Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN, USA

Enrichment Method

Distillation or Chemical Method

Only One Stable Isotope

Radioactive

Electromagnetic Method

Photochemical Method

Isotope Separation by centrifugation

ideal elementary separation factor (negligible back-pressure): $\alpha = \exp[(M_2 - M_1) \Omega^2 r^2 / 2RT)$ for ^{235,238}UF₆ as function of peripheral speed v = Ω r (T = 310 K):

v (m/s)	400	500	600	700
α	1.098	1.15	1.23	1.33

v is limited by the material strength of the wall !

Centrifuge facilities

1918: Dempster 180 degree spectrometer

$$m/q = (B^2 r^2) / 2 U$$

1920: discovery of isotopes in Li, Mg, K, Ca, Zn

Calutron 1942: electromagnetic isotope separation

Calutron tanks

Collector plates of a Calutron

1945: large scale electromagnetic isotope separation

>1945: dismantling of most calutrons

beta-Calutron

Daily production per tank: 160 mg ¹⁷⁶Yb 200 mg ¹⁶⁰Gd 110 mg ¹⁵⁵Gd 4 mg ¹⁵²Gd

AL&AK Yergey, J Am Soc Mass Spectrometry

MW

Russian EMIS

22 м

New DOE EMIS

B Egle, J Radioanal Nucl Chem 2014;299:995.

New DOE EMIS

Poster by Stuart Warren et al.

B Egle, J Radioanal Nucl Chem 2014;299:995.

SIDONIE mass separator

J. Camplan et al., Nucl. Instr. Meth. 84 (1970) 37. K. Alexandre et al., Nucl. Instr. Meth. 84 (1970) 45. C.O. Bacri et al., Nucl. Instr. Meth. B 406 (2017) 48.

157 Gd/ 158 Gd = 0.047(5)%

U.K. et al., Nucl Instr Meth B 2020,463:111.

Poster by Morgane Bouteculet et al.

^{152,155}Gd(p,n)^{152,155}Tb production

 $^{152}Gd(p,n)^{152}Tb$ $\Box 12 \text{ MeV } p$ $^{155}Gd(p,n)^{155}Tb$ $\Box 12 \text{ MeV } p$

>99.7% pure ¹⁵²Tb produced

Poster by Morgane Bouteculet et al.

U.K. et al., Nucl Instr Meth B 2020,463:111.

¹⁵²Tb production from ¹⁵²Gd targets

12 MeV protons on 150 mg/cm² ¹⁵²Gd target \Box 30 MBq/µAh 100 µA for 12 h: **20-30 GBq at EOI** \Box **100 patients**

FIELD SHIFT

due to different charge radii

AVLIS (Atomic Vapor Laser Isotope Separation)

3-step resonant laser ionization of ytterbium

Channel	Wavelength, nm	Dye	Power, W	Spectr.band, MHz	Pulse width, ns
1	555	R110	5	500	15
2	581	R6G	5	500	15
3	582	R6G	20	3.104	20

Pumping: power 120 – 130W, λ = 510nm, f = 10kHz, τ = 20ns.

Output of the system: 3 g/ year

Final isotope content:

- Yb 168 20.21% (0.14 % natural Yb)
- Yb 170 2.36%
- Yb 171 18.38%
- Yb 172 15.45%
- Yb 173 12.1%
- Yb 175 22.38%
- Yb 176 9.12%

S. Akulinichev et al., INR Troitsk, ICTR-PHE 2012.

Enrichment of 5-7 mg/h ¹⁷⁶Yb

₽50 g/year

A.D. Rath et al., BARC Newsletter, March-April 2022.

Mass separation of stable lanthanide isotopes

Electromagnetic isotope separation (EMIS) highest SF! Atomic vapor laser isotope separation (AVLIS)

Mass separation of radioactive lanthanide isotopes

Electromagnetic isotope separation (EMIS) highest SF! Atomic vapor laser isotope separation (AVLIS) Resonant laser ionization + EMIS

"Upgrade" of c.a. to n.c.a. by mass separation

J.M. D'Auria et al., Rev Sci Instrum 2013;84:034705.R. Formento et al., Nucl Instrum Meth B 2020;463:468.Z. Talip et al., Appl Radiat Isot 2021;176:109823.

a very useful beam dump !

but also off-line separation of imported activity

Isotope selection with the ISOL method

Production of ¹⁴⁹Tb, ¹⁵²Tb and ¹⁵⁵Tb at ISOLDE

Resonant laser ionization combined with mass separation

Poster by Maryam Mostamand et al.

S. Rothe et al., Nature Comm 2013;4:1835.

Predicted production rates

https://isoyields2.web.cern.ch/InTargetProductionChart.aspx

Lu Yb Tm Er Ho Dy Tb Gd Eu Sm Pm Nd Pr

¹⁵²Tb production from Ta targets

ISOLDE 1.4 GeV protons on 50 g/cm^{2 nat}Ta target \Box 25 GBq/µA Dy-152 in target! MEDICIS 1.4 GeV protons on 50 g/cm^{2 nat}Ta target \Box 35 GBq/µA Tb-152 in target!

ISOLDE
1.5 μA for 5 h:
1 GBq at EOI

TATTOOS
100 μA for 12 h:
100 GBq at EOI 300 patients

Beam optimization with ISOLTRAP's MR-ToF-MS

Poster by Wiktoria Wojtaczka et al.

Production schemes

Production schemes

References

The Making of the Atomic Bomb, Richard Rhodes, Penguin Books, 1986.

Uranium Enrichment and Nuclear Weapon Proliferation, A.S. Krass et al., Taylor & Francis, 1983.

Heavy Water and the Wartime Race for Nuclear Energy, Per F. Dahl, IOP, 1999.

More information on isotopes, enrichment, etc. at:

http://www.wise-uranium.org

WINNER OF THE PULITZER PRIZE, THE NATIONAL BOOK AWARD AND THE NATIONAL BOOK CRITICS CIRCLE AWARD

Isotope Separation by gaseous diffusion

K-25 diffusion plant

5 million barrier tubes: 10-25 nm pore size 10 million m² Ni coated

1910: Thomson parabola mass spectrograph

 $y = k m/q x^2;$ $k = 2 U/(d B^2 L^2)$

1913 discovery of isotopes

The LOHENGRIN fission fragment spectrometer

Costs

Compared to n.c.a. ¹⁷⁷Lu

	¹⁷⁷ Lu	¹⁶¹ Tb	Advantage ¹⁶¹ Tb
Activity per injection (GBq)	7	?5	?1.4
Cross-section ¹⁷⁶ Yb or ¹⁶⁰ Gd (b)	2.85	1.5	0.55
Historic calutron throughput (g/tank d)	0.16	0.2	1.25
Natural abundance (% ¹⁷⁶ Yb or ¹⁶⁰ Gd)	13	21.9	1.7
Co-production of other useful isotopes	¹⁶⁸ Yb	¹⁵² Gd ¹⁵⁵ Gd ¹⁵⁷ Gd	++
Enriched isotope costs per injection			? 1 − 1.3
Chemical separation (Lu/Yb vs. Tb/Gd)	1.54	2.4	++

Industrially produced n.c.a. ¹⁶¹Tb should not be more expensive than n.c.a. ¹⁷⁷Lu !

Resonance Ionization Laser Ion Source

Automated Switching between Ionization Schemes

Courtesy of Felix Weber & Vadim Gadelshin, JGU Mainz

60

³⁵ 30 ²⁵

10

15

Carrier added vs. non-carrier added

Irradiation of 100% enriched precursor

for 1x $T_{1/2}$ in very high neutron flux ($P = 10^{15} \text{ cm}^{-2}\text{s}^{-1}$) and 1 day decay: ¹⁷⁷Lu P = 70% of theoretical specific activity

⁸⁹Sr 1.7%, ⁹⁰Y 0.02%, ¹⁵³Sm 1.7%, ¹⁶⁶Ho 0.2%, ¹⁶⁹Er 0.2%

Reactor produced radionuclides

Direct production

Carrier-added (c.a.) Limited specific activity Limited radionuclidic purity "Easy & cheap" c.a. ¹⁷⁷Lu, ⁸⁹Sr, ⁹⁰Y, ¹⁵³Sm, ¹⁶⁶Ho, ¹⁶⁹Er, ¹⁸⁶Re, etc.

Indirect production

No-carrier added (n.c.a.) Close to theoretical spec. act. Optimum radionuclidic purity Needs radiochem. separation n.c.a. ¹⁷⁷Lu, ¹¹¹Ag, ¹⁴⁹Pm, ¹⁶¹Tb Generator: ⁴⁷Sc, ⁹⁰Y, ^{99m}Tc, ¹⁶⁶Ho, ¹⁸⁸Re, etc. mainly odd Z radionuclides !

Direct + mass-separation

No-carrier added (n.c.a.) Close to theoretical spec. act. Optimum radionuclidic purity Still under R&D n.c.a. ¹⁵³Sm, ¹⁶⁹Er, ¹⁷⁵Yb, etc.

¹⁶¹Tb costs compared to n.c.a. ¹⁷⁷Lu

	¹⁷⁷ Lu	¹⁶¹ Tb	Advantage ¹⁶¹ Tb
Equitoxic activity per injection (GBq)	7.4	₽5.4	?1.4
Cross-section ¹⁷⁶ Yb or ¹⁶⁰ Gd (b)	2.8	1.4	0.5
Historic calutron throughput (g/tank d)	0.16	0.2	1.25
Natural abundance (% ¹⁷⁶ Yb or ¹⁶⁰ Gd)	13	21.9	1.7
Co-production of other useful isotopes	¹⁶⁸ Yb	¹⁵² Gd ¹⁵⁵ Gd ¹⁵⁷ Gd	++
Enriched isotope costs per injection			? 0.9 − 1.2
Chemical separation (Lu/Yb vs. Tb/Gd)	1.54	2.4	++

Industrially produced n.c.a. ¹⁶¹Tb should have similar cost to n.c.a. ¹⁷⁷Lu. Highly correlated production chain 2¹⁶¹Tb is **not** an independent backup !

Molecular Laser Isotope Separation

7

Molecular Laser Isotope Separation: SILEX process

The Separative Work Unit

The Separative Work Unit

The Separative Work Unit

Spinoffs of uranium enrichment

