

Dose-response effects of the additional Auger and IC electrons of ¹⁶¹Tb- vs ¹⁷⁷Lu-labeled agonists and antagonists for PRRT

Kaat Spoormans, Melissa Crabbé, Lara Struelens, Michel Koole

PRISMAP Radiolanthanides Workshop

Paul Scherrer Institut, Switzerland, on September 3-5, 2024

- Chemically comparable to ¹⁷⁷Lu
 => compatible with existing radiolabeling chemistry techniques
- Similar physical properties (half life, beta energy,...)
- High emission of low energy internal conversion and Auger electrons (in addition to one beta particle ~ 2.24 e⁻ per decay)
- e⁻ energy between 3 and 50 keV (27% of beta energy) but much higher local dose density due to shorter range in tissue (0.5–30 µm) \cong ¹¹¹In

part of a theranostic family of Terbium elements

Lehenberger et al. The low-energy $\beta(-)$ and electron emitter (161)Tb as an alternative to (177)Lu for targeted radionuclide therapy. Nucl Med Biol. 2011 Aug;38(6):917-24.

Isotope T1/2 (d)		<i>Ē</i> β (MeV)	Electrons, keV (%)		Photons, keV (%)	
¹⁶¹ Tb	6.906	0.15	0–20 (15	50.3)	45 (18)	
			20–40 (6	60.6)	48.9 (17)	
			40–60 (1	4.5)	74.6 (10.	2)
			60–300 (1.6)			
¹⁷⁷ Lu	6.647	0.14	0–20 (8.	8)	54 (4.4)	
			20–40 (0)		112.9 (6.2)	
			40-60 (5.4)		208.4 (10.4)	
			60–300	(9.7)		
Tb 152		Tb 155		Tb 149		Tb 161
4.2m 17 γ283; ε	.5 h	5.32 d		4.2m 4.1		6.90 d
ε; β ⁺ γ 34 γ 344: 586:	4;	γ87; 105:		$\alpha 3.99 \qquad \beta^+ 1.8 \\ \gamma 796; \qquad \gamma 352;$		β ⁻ 0.5; 0.6 γ 26; 49; 75
411 271		180, 262		165 165		e-
β+		v		α/β+		β ⁻ + γ
T _{1/2} = 17.5h		$T_{1/2} = 5.3$	d $T_{1/2} = 4.11$		h	$T_{1/2} = 6.9d$
PET imaging		SPECT imag	ing α Therapy		у	β Therapy

dose deposition per decay at short distances => ¹⁶¹Tb better candidate for irradiating single tumour cells and micrometastases than ¹⁷⁷Lu?

Bernhardt et al. Dosimetric Analysis of the Short-Ranged Particle Emitter 161Tb for Radionuclide Therapy of Metastatic Prostate Cancer. *Cancers* **2021**, *13*, 2011.

Α

100

Dose for 1 decay per um

<> ¹⁶¹Tb S-values for active bone marrow and, consequently, bone marrow toxicity profile more dependent on the radionuclide distribution within the bone marrow cavity than for ¹⁷⁷Lu and ⁹⁰Y (because of low-energy electron emission of ¹⁶¹Tb)

Hemmingsson et al EJNMMI Phys. 2022 Sep 24;9(1):65

Preclinical evidence

PC-3 flu cell viability (%)

Borgna *et al.* Combination of terbium-161 with somatostatin receptor antagonists—a potential paradigm shift for the treatment of neuroendocrine neoplasms. *Eur J Nucl Med Mol Imaging* **49**, 1113–1126 (2022).

Müller *et al.* Terbium-161 for PSMA-targeted radionuclide therapy of prostate cancer. *Eur J Nucl Med Mol Imaging* **46**, 1919–1930 (2019)

SPECT imaging potential

LEHR with EM2 at 74.6 ± 10% keV optimal

- Clinical ¹⁶¹Tb SPECT/CT protocol proposed
- ¹⁶¹Tb and ¹⁷⁷Lu enable simultaneous SPECT imaging
- Preclinical SPECT imaging demonstrated for ¹⁶¹Tb

Borgna, F et al. Simultaneous Visualization of 161Tb- and 177Lu-Labeled Somatostatin Analogues Using Dual-Isotope SPECT Imaging. *Pharmaceutics* **2021**, *13*,536.

Marin et al. EJNMMI Physics (2020) 7:45

Baum et al. First-in-Humans Application of ¹⁶¹Tb: A Feasibility Study Using ¹⁶¹Tb-DOTATOC. Journal of Nuclear Medicine October 2021, 62 (10) 1391-1397

Clinical trials

Combined Beta- Plus Auger Electron Therapy Using a Novel Somatostatin Receptor Subtype 2 Antagonist Labelled With Terbium-161 (161Tb-DOTA-LM3) (Beta-plus)

EValuation of radIOLigand Treatment in mEn With Metastatic Castration-resistant Prostate Cancer With [161Tb]Tb-PSMA-I&T (VIOLET)

SPECT/CT obtained on 2nd day after injection of ¹⁶¹Tb-DOTATOC

Why do we expect a higher dose-response?

Eckerman K, Endo A. ICRP Publication 107. Nuclear decay data for dosimetric calculations. Ann ICRP. 2008;38(3):7-96. doi: 10.1016/j.icrp.2008.10.004.

Why do we expect a higher dose-response?

range

LET

Auger electrons Average range in water: 97 nm

IC electrons Average range in water: 13 μm

- particle trajectory
 - interaction site

beta particles Average range in water: 301 μm

Methodology

Establishing survival curves

Colony forming assay

- ¹⁷⁷Lu- and ¹⁶¹Tb-DOTA-TATE (agonist)
- ¹⁷⁷Lu- and ¹⁶¹Tb-DOTA-LM3 (antagonist)
- Cell type: CA20948

Cellular dosimetry

- Radiopharmaceutical uptake
- Energy deposition for Auger, IC and β electrons

Colony Forming Assay

[¹⁷⁷Lu]Lu-DOTA-TATE **–** [¹⁷⁷Lu]Lu-DOTA-LM3

Cellular dosimetry \rightarrow MIRD formalism **Activity** = Number of nuclear decays per second (Bq) \rightarrow Can be measured **Dose** = Absorbed energy per gram tissue (Gy) * \rightarrow Should be calculated **Time Integrated Activity Coefficient (TIAC)** = total number of nuclear decays in r_s Energy deposition → S-value = dose to r_T per nuclear decay in r_s $D_{r_T} = \sum \sum \tilde{A}(r_s, T_D) S(r_T \leftarrow r_s)$ $T_{\rm D}$ $r_{\rm s}$ target region r_T nucleus T_D dose integration period incubation period, colony forming period source region $r_{\rm s}$ internalized activity, membrane bound, neighboring cells, medium

Total uptake at 4h (different activity concentrations)

Association < 4h (low/medium/high activity concentrations – ¹⁶¹Tb)

Dissociation/excretion into the medium (100kBq/ml – ¹⁷⁷Lu)

Division of activity over the colony

Cells per colony

S-values

= Absorbed dose / nuclear decay

Monte Carlo simulations

+

= a calculation based on statistical sampling of decays and following physical interaction

 \rightarrow Particle transportation code that 'knows' the physics and simulates the interaction of the radiation with the subcellular structures

Geometry

2. Realistic cell geometries

sck cen Belgen Hucker Research Centre

- No significant difference in dose-response
 - Auger electrons do not reach nucleus from within the cytoplasm
 - Additional IC electrons are not more effective as β⁻ electrons
- Linear dose-response

- Linear dose-response for ¹⁷⁷Lu-DOTA-LM3
- Linear-quadratic dose-response for ¹⁶¹Tb-DOTA-LM3

- **Significant** difference in dose-response (p<0.0001)
- Not expected. Dose mainly from long range β⁻ electrons → no effect from subcellular distribution expected.
- Possible explanation is cleaved peptides due to trypsinization within the colony forming assay. This reduces the binding and dose, which would be more prominent for the membrane bound ¹⁷⁷Lu-DOTA-LM3

- **Significant** difference in dose-response (p<0.0001)
- Additional quadratic term for ¹⁶¹Tb-DOTA-LM3
 - Main difference is subcellular localization
 - Due to cell membrane damage by the Auger electrons?

Activity-Response

Dose <> Activity

- differences in emission
 spectra of the radionuclides
- effect of subcellular distribution and differences in source geometry

Conclusions

- We confirmed the earlier observed increased response as well as higher dose for ¹⁶¹Tb compared to ¹⁷⁷Lu-labelled peptides
- Increased dose for ¹⁶¹Tb is mainly due to the IC electrons
- No significant difference in dose-response between ¹⁷⁷Lu- and ¹⁶¹Tb-DOTATATE (observed increased response only due to the increased dose to the nucleus)
- Range of Auger electrons is too small for dose delivery to the nucleus from within the cytoplasm
- => subcellular targeting is important for ¹⁶¹Tb-radiopharmaceuticals
- Quadratic dose-response for ¹⁶¹Tb-DOTA-LM3 => cell membrane damage by Auger electrons?

Acknowledgements

SCK-CEN

Kaat Spoormans Melissa Crabbe Lara Struelens Maarten Ooms **KU Leuven** Michel Koole Chris Cawthorne

