Production of Radiolanthanides for Medical Applications in the USA

Paul A. Ellison

Assistant Professor Department of Medical Physics University of Wisconsin School of Medicine and Public Health, Madison, WI, United States

The PRISMAP Radiolanthanides Workshop Paul Scherrer Institute Villigen, Switzerland September 4, 2024

Darleane Hoffman – pioneering radiolanthanide chemist

Louise Smith and Hoffman, J Inorg Nucl Chem 3: 243-247 (1956).

Periodic Table of the Elements

Periodic Table of the Elements

Lanthanides and their homologues

¹⁶⁵Er at the University of Wisconsin

Article

A High Separation Factor for ¹⁶⁵Er from Ho for Targeted **Radionuclide Therapy**

Isidro Da Silva ^{1,2}, Taylor R. Johnson ¹, Jason C. Mixdorf ¹, Eduardo Aluicio-Sarduy ¹, Todd E. Barnhart ¹, R. Jerome Nickles¹, Jonathan W. Engle^{1,3} and Paul A. Ellison^{1,*}

> Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA; isidro.dasilva@cnrs-orleans.fr (I.D.S.); trjohnson32@wisc.edu (T.R.J.); jmixdorf@wisc.edu (J.C.M.); aluiciosardu@wisc.edu (E.A.-S.);

Conditions Extrêmes et Matériaux: Haute Température et Irradiation, Centre National de la Recherche Scientifique, UPR3079, Energy, Materials Earth and Universe Science Doctoral School, Université d'Orléans,

Department of Radiology, University of Wisconsin School of Medicine and Public Health, 1111 Highland

tebarnhart@wisc.edu (T.E.B.); rnickles@wisc.edu (R.J.N.); jwengle@wisc.edu (J.W.E.)

Isidro Da Silva (CEMHTI, Orleans, France)

2 3

1

F-45071 Orléans, France

Avenue, Madison, WI 53705, USA Correspondence: paellison@wisc.edu

Taylor Johnson

Supported by Department of Energy Isotope Program, managed by the Office of Science for Isotope R&D and Production grant DE-SC0020955

Ho_(m) target – cyclotron irradiations

^{nat}Ho_(m) 99.99995% purity from ^{nat}Er (0.5 ppm)

Diam (mm)	Ho Dimensions Thick. (mm)	Mass (mg)	E _{in} (MeV)	E _{out} (MeV)	¹⁶⁵ Er Physical Yield (MBq·μA ⁻¹ ·h ⁻¹)	n
9.5	280-300	174 ± 8	12.5	7.5	24.1 ± 0.5	5
9.5	200-240	125 ± 6	12.5	8.4-9.1	19.1 ± 1.1	3
7.9	270-280	108 ± 4	12.5	7.8	14.1 ± 1.4	3
7.9	190	69 ± 1	12.5	9.3	12.0 ± 0.9	4

After 40 µA

Ho/¹⁶⁵Er separation step 1: CX / αHIB

Ho/¹⁶⁵Er separation step 2: LN2 EXC

2. $52 \pm 9 \text{ mL } 0.4 \text{ M}$ HNO₃ at 1 mL/min

3. 4 – 5 mL 1 M HNO3 at 1 mL/min

<u>570 ± 370 µg Ho</u>

2. (99.91 ± 0.06)% Ho, (23 ± 7)% ¹⁶⁵Er

3. $(78 \pm 6)\%$ Er recovery, SF_{Ho/Er} = 1020 ± 320

▶ <u>380 ± 210 ng Ho</u>

DGA EXC in practice and results

- 1. ¹⁶⁵Er in ∼6 mL 5 M HNO₃
- 2. 15 mL 3 M HNO₃
- 3. 2 mL 0.5 M HNO₃
- 4. 1.5 mL 0.01 M HCI

- 1. No ¹⁶⁵Er
- Trace metal impurities (Fe, Cr, Co, Ni, Cu), no ¹⁶⁵Er
- Lower column acidity, no ¹⁶⁵Er
- 4. (98 ± 1)% ¹⁶⁵Er
 recovery, 1.5 ± 0.1 mL
 0.01 M HCI

<u>0.4 – 1.4 mL 0.01 M HCI</u>

<u>4 mL 1 M HNO₃</u>

Overall ~5 hour process: 64±2% ¹⁶⁵Er recovery, SF_{Ho/Er} = (2.8±1.1)·10⁵

Proof-of-concept [¹⁶⁵Er]PSMA-617 synthesis

[†] Radioactivity and MA decay-corrected to end of bombardment.

Positron-emitting ⁸⁶Y production and isolation

Applied Radiation and Isotopes 142 (2018) 28-31

Simplified and automatable radiochemical separation strategy for the production of radiopharmaceutical quality ⁸⁶Y using single column extraction chromatography

Eduardo Aluicio-Sarduy^a, Reinier Hernandez^b, Hector F. Valdovinos^{a,1}, Christopher J. Kutyreff^a, Paul A. Ellison^a, Todd E. Barnhart^a, Robert J. Nickles^a, Jonathan W. Engle^{a,b,*}

^a Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA ^b Department of Radiology, University of Wisconsin-Madison, Madison, WI 53705, USA

Eduardo Aluicio-Sarduy

Jonathan Engle

U.S. Department of Energy

⁸⁶Y work at UWisc has been supported by US DOE Isotope Program, managed by the Office of Science for Isotope R&D and Production grant DE-SC0020960.

Radionuclide is available to researchers through National Isotope Development Center at www.isotopes.gov

Positron-emitting ⁸⁶Y production and isolation

Sr

HNO₃ - 0.5 M: Rinse (15mL)

DGA

~150 mg/cm² pressed 86 SrCO₃ (or 86 SrO) 5 μ A (20 μ A for SrO), 14 – 15 MeV protons **110 MBq·µA-1·h-1** ⁸⁶Y, >95% RNP at EoC

50 ± 10 MBg/nmol DOTA radiolabeling 98 ± 1% ⁸⁶SrCO₃ recycling efficiency

Aluicio-Sarduy et al., Appl Radiat Isot 142: 28-31 (2018). Aluicio-Sarduy et al., Nucl Med Biol 126-127: 108780 (2023).

ARTICLES https://doi.org/10.1038/s41557-020-00598-7 nature chemistry

Developing the ¹³⁴Ce and ¹³⁴La pair as companion positron emission tomography diagnostic isotopes for ²²⁵Ac and ²²⁷Th radiotherapeutics

Tyler A. Bailey^{1,2,5}, Veronika Mocko^{3,5}, Katherine M. Shield^{1,2,5}, Dahlia D. An², Andrew C. Akin³, Eva R. Birnbaum³, Mark Brugh³, Jason C. Cooley³, Jonathan W. Engle⁴, Michael E. Fassbender³, Stacey S. Gauny², Andrew L. Lakes², Francois M. Nortier³, Ellen M. O'Brien³, Sara L. Thiemann³, Frankie D. White³, Christiaan Vermeulen³, Stosh A. Kozimor³ and Rebecca J. Abergel^{1,2}

¹Department of Nuclear Engineering, University of California, Berkeley, CA, USA. ²Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. ³Los Alamos National Laboratory, Los Alamos, NM, USA. ⁴Department of Medical Physics, University of Wisconsin, Madison, WI, USA. ⁵These authors contributed equally: Tyler A. Bailey, Veronika Mocko, Katherine M. Shield. ^{IM}e-mail: etienne@lanl.gov; stosh@lanl.gov; abergel@berkeley.edu

Veronika Mocko (LANL) Rebecca Abergel (UCB)

¹³⁴Ce work has been supported by US DOE Isotope Program, managed by the Office of Science for Isotope R&D and Production and LA-UR-23-31751.

Radionuclide is available to researchers through National Isotope Development Center at www.isotopes.gov

Motivation: ¹³⁴Ce/¹³⁴La as imaging companion for α -radiotherapy

- Increased application of targeted alpha therapy ²²⁵Ac (T_{1/2} 9.9d), ²²⁷Th (T_{1/2} 18.7d)
- PET radiometals: ⁶⁸Ga (T_{1/2} 67.7min), ⁶⁴Cu(T_{1/2} 12.7h), ¹³²La(T_{1/2} 4.8h), ¹³³La(T_{1/2} 3.9h)
 - ⁶⁸Ga, ⁶⁴Cu different chemistry and coordination
 - All too short lived to track biological fate over several days

¹³⁴Ce production

- natLa (p, 6n)¹³⁴Ce
- 32 g of La metal (45.7 x 3 mm)
- Incident energy 77.9 MeV, Exit energy 67.8 MeV H⁺
- Beam current 100 μA, Cumulative charge ~3000 μA.h

La puck in target shell

Irradiated target

Baily, Mocko, Vermeulen, Kozimor, Abergel, et. al. NATURE CHEM 13. 284 (2021).

Slide provided courtesy of Veronika Mocko (LANL) – full presentation available at: https://www.isotopes.gov/sites/default/files/2023-11/DOE_IP_virtual-seminar-series_Ce-134.pdf

Baily, Mocko, Vermeulen, Kozimor, Abergel, et. al. NATURE CHEM 13. 284 (2021).

Slide provided courtesy of Veronika Mocko (LANL) – full presentation available at: https://www.isotopes.gov/sites/default/files/2023-11/DOE_IP_virtual-seminar-series_Ce-134.pdf

Product characterization: gamma spectroscopy & ICP-OES

- Radionuclidic purity >99.8% (excluding ¹³⁵Ce, ¹³⁷mCe, ¹³⁹Ce and daughters)
- ¹³⁵Ce < 1%, ^{137m}Ce < 5%, ¹³⁹Ce < 3%
- Specific activity >4,000 Ci/g, typical 8,000-12,000 Ci/g on ship date
- Form: Ce(III) in 0.1 M HCl
- Concentration > 5 mCi/mL, typical 10-20 mCi/mL
- Total Ce 42-101 μg, total Ce concentration 1.4-10.4 μg/mL
- Total La 50-169 μg, total La concentration 1.7- 17.4 μg/mL

Slide provided courtesy of Veronika Mocko (LANL) – full presentation available at: https://www.isotopes.gov/sites/default/files/2023-11/DOE_IP_virtual-seminar-series_Ce-134.pdf

~40 GBq ¹³⁴Ce available to ship ~10 days post EoB

~50 MBq/nmol (by ICP-OES)

Isotope Program

NIDC NATIONAL ISOTOPE DEVELOPMENT CENTE

Radioterbium across the United States

Terbium-149 @ Texas A&M University Cyclotron Institute

- The ragnostic: decay by α and $\beta +$ (TAT and PET)
- t_{1/2} = 4.1 hours
- Cross section measurements
 - ⁶Li, ⁷Li, ¹H beams
 - Sm, Eu, Gd targets
 - 22 isotope cross sections measured
 - including 3 metastable states
- Hyperion (LLNL) allows ^{148m}Tb, ^{149m}Tb, ^{150m}Tb cross sections, thus ratio of metastable state to ground
- Future foil stack measurements → excitation function

"Cross sections for ^{147–149}Sm(⁶Li,x) for the Production of ¹⁴⁹Tb for Targeted Alpha Therapy" Bills, L.A. *et al.*, Manuscript in preparation.

Laura Bills (McCann) – Graduate Student lamccan@tamu.edu

Alan McIntosh – Research Scientist alanmcintosh@tamu.edu

Sherry Yennello – Professor

Universities of Missouri / Washington Tb collaboration

University of Washington Clinical Cyclotron

- Multiparticle (p, d, α)
- Up to 50 MeV p, α, 70 μA

Professor Yawen Li

Anster Charles

University of Missouri Research Reactor

- 10 MW
- thermal flux:
 ~4·10¹⁴ cm⁻²·s⁻¹

Professor Heather Hennkens

Madhushan Serasinghe

$^{153}Eu(\alpha, 2n)^{155}Tb$

Energy window (MeV)	Production rate (MBq/μAh)	¹⁵⁵ Tb Purity, 100 h (%)
26-20	1.9, EOB	93.1
28-22	3.5, EOB	96.2
30-24	2.6 <i>,</i> EOB	93.9

UNIVERSITY of WASHINGTON

Slide provided courtesy of Anster Charles and Yawen Li (UWash)

Eu debulking for Eu/Tb separation

- Eu to Tb mass ratio is significantly large (1 g : 0.5 μg)
- Debulking is desirable to reduce and recover ¹⁵³Eu excess mass
- Eu, Sm, Yb only lanthanides with accessible +2 oxidation states

 $Eu^{3+} + e^- \rightarrow Eu^{2+} (-0.43V)$

 $Tb^{3+} + 3e^- \rightarrow Tb(-2.28V)$ 🗙

- Since Eu³⁺ can be easily reduced to its +2 state, an electro-amalgamation approach was used for debulking
- 90-95% Eu³⁺ debulking observed in 25-min run (86 mg Eu, 300 MBq of ¹⁶¹Tb as ¹⁵⁵Tb surrogate)

Slide provided courtesy of Madhushan Serasinghe and Heather Hennkens (University Missouri)

Chromatographic polishing separation

- TrisKem columns used to isolate Tb from remaining Eu and formulate Tb product
- 84-90% overall recovery of Tb as $TbCI_3$ in 0.05 M HCl with RCP >95%
 - labels DOTA at 4 MBq/nmol at ~0.07 MBq/µL
- 82% recovery of Eu as Eu₂O₃ (from processing of Hg layer following electrolytic reaction)

MURR production of ¹⁶¹Tb

- MURR is the University of Missouri Research Reactor, located in Columbia, Missouri, USA
- Highest power university-operated research reactor in the USA (10 MW)
- Produces various radiolanthanides via neutron irradiation
- High thermal neutron flux is desirable for indirect ¹⁶¹Tb production from enriched ¹⁶⁰Gd

*To simulate processing of large target masses, 200 mg of natGd is added prior to Gd/Tb separation

Slide provided courtesy of Patrick Bokolo and Heather Hennkens (University Missouri)

29

MURR processing of ¹⁶¹Tb

Synergistic Solvent Extraction

1. Solvent Extraction Studies

(Measure K_d, Synergism, Separation Factors)

- ✓ Dibutyl N.N-Diethylcarbamylmethylenephosphonate (DBDECMP)
- ✓ 2-Thenoyltrifluoroacetone (HTTA)
- 0.05 M DBDECMP and 0.05 M HTTA • extractant in 1,2-Dichloroethane
- Maximum K_d Ratio of 3.5 3.7

UNIVERSITY

OF UTAH®

DBDECMP

THE

$$SEC = Log_{10} \left[\frac{K_{d_{(1,2)}}}{\left(K_{d_{(1)}} + K_{d_{(1)}} \right)} \right]$$

SEC = 1 = 10x increase in K_d SEC = 2 = 100x increase in K_d SEC = 3 = 1000x increase in K_d

Slide provided courtesy of Connor Holiski and Tara Mastren (UUtah)

Novel Synergistic EXC Resins for Gd/Tb Separations

2. EXC Extraction Studies

(EXC Resin Preparation, Evaluate D_w, Thermodynamics, Synergism, and Separation Factors)

- ✓ Prepare numerous EXC resins with differing wt. % of each ligand
- ✓ Synergism retained
- \checkmark D_w are functions of pH and ligand wt. %

3. Column Experiments

(Study feasibility of Gd/Tb column separations)

- ✓ D_w Ratio of 1.5 at pH 2 HNO₃
- ✓ Load at pH 3 HNO₃
- ✓ Separate at pH 2 HNO₃

THE

 ✓ Proof-of-concept to design new EXC materials with multiple ligands to improve extraction and separation.

<u>Connor K. Holiski</u> et al. Novel Synergistic Extraction Chromatographic Materials for the Separation of ¹⁶¹Tb from Enriched ¹⁶⁰Gd Targets. Submitted to Separation and Purification Technology.

OF UTAH®

UNIVERSITY

Flow Rate: $\approx 0.22 \text{ mL/min}$ (Peristaltic pump) & Fraction Volume: $\approx 2000 \mu \text{L}$ Column Type: 3 mL ($\emptyset = 5 \text{ mm}$, $\ell = 150 \text{ mm}$ BIORAD 7370517)2

Slide provided courtesy of Connor Holiski and Tara Mastren (UUtah)

Acknowledgements

Anster Charles and Yawen Li (U. Washington)

L. Bills (McCann), A. McIntosch, S. Yennello (TAMU)

M. Serasinghe, P. Bokolo and H. Hennkens (Mizzou)

V. Mocko (LANL)

Connor Holiski and Tara Mastren (UUtah)

Department of Energy Isotope Program, managed by the Office of Science for Isotope R&D and Production grant DE-SC0020955 (Mastren), DE-SC0022550 (Engle/Ellison), DE-SC0022235 (Hennkens).

Thank you for your attention

Ho_(m) target material selection

- Alfa Aesar 99.9% Ho(m) foils
 - ~100 ppm Er impurity
 - With 1 GBq in 100 mg Ho_(m)
 - 10 µg = 60 nmol Er
 - AMA limit ≤ 17 MBq/nmol
- US DOE Ames Laboratory Materials
 Preparation Center discs
 - 0.5 ppm Er impurity
 - With 1 GBq in 100 mg Ho_(m)
 - 50 ng = 0.30 nmol Er
 - AMA limit ≤ 3,300 MBq/nmol

Ho_(m) cyclotron target fabrication

Materials Preparation Center

^{nat}Ho_(m) 99.99995% purity from ^{nat}Er (0.5 ppm)

Rolled and punched

Spot welded to 19 mm ø, 0.5 mm Ta

Ellison et al., Appl Radiat Isot 118: 350-353 (2016).

Radiotherapeutic quality ¹⁶⁵Er in preclinical quantities

Ho

- **1 GBq** ¹⁶⁵Er per hour irradiation
- Isolation from up to **180 mg** Ho
 - (64 ± 2)% ¹⁶⁵Er recovery into ≤1 mL 0.01 M HCI
 - Ho/Er separation factor (2.8 ± 1.1)·10⁵
 - 4.9 ± 0.7 hour chemical processing time
- Successful ~50 MBq-scale DOTA-based radiopharmaceutical labelings performed at 10 – 50 MBq/nmol

Da Silva et al., Molecules 26: 7513 (2021).

¹⁶⁵Er:

7x Ae-

.1 keV

·90 nm)

Slide provided courtesy of Veronika Mocko (LANL) – full presentation available at: https://www.isotopes.gov/sites/default/files/2023-11/DOE_IP_virtual-seminar-series_Ce-134.pdf

155 Gd(α ,4n) 155 Dy \rightarrow 155 Tb

*Before chemical separation

Slide provided courtesy of Anster Charles and Yawen Li (UWash)

2