

Hybrid hydroxypyridinone-macrocyclic chelators for coordination of lanthanide and actinide radionuclides

Michelle Ma

King's College London

Acknowledgements

Paul Scherrer Institute

Cristina Muller Nicholas van der Meulen Christian Vaccarin Pascal Grundler

King's College London Alex Rigby Charlotte Rivas Rory Kenrick

Dr Alex Rigby

Dr Charlotte Rivas

Current group

Natasha Patel

Rory Kenrick

Jung Sik Shin

Dr Truc Pham

Dr Rachel Nuttall

Dr Ollie Carter

Past members Dr Ingebjorg Hungnes Dr Alex Rigby Dr Charlotte Rivas Dr Jessica Jackson Dr Matt Farleigh Dr Ruslan Cusnir

Inorganic Chemistry of Radiopharmaceuticals

ACS Publications

Inorg. Chem. 2023, volume 62, issue 50

Eszter Boros, Michelle Ma, Justin Wilson

Coordination chemistry for Ln and An is alive and well

B Hydroxypyridinone derivatives of macrocycles

ΗÓ

HΟ

CO₂H

HO

Hydroxypyridinones have exceptionally high affinity for hard metal ions

 Derivatives of cyclen (e.g. DOTA) provide complexes of high kinetic stability

Is there utility in combining these chelating motifs?

HO₂C

NH HN

L1

NH

Ο

·NH

OH

N HN

L²

NH

OH

HN

HO

HO

HN

Prior work on ¹¹¹In³⁺

A new library of HOPO-macrocycles

- Therefore we modified the amide bond and also looked into incorporating 4 HOPO groups
- Hydroxypyridinones exhibit high affinity for hard metal ions and can complex metal ions under mild conditions:
 - 1,2-HOPO
 - 3,4-HOPO
- Cyclen/cyclam-based chelators provide high kinetic stability

We have synthesised a series of new chelators that coordinate Ln and An ions

Chelator A: Dai, Law et al., Chemical Science, 2019

A new library of HOPO-macrocycles

- 1,2-HOPO derivatives of cyclam and cyclen coordinate La³⁺, Th⁴⁺,Tb³⁺ and Lu³⁺
- 3,4-HOPO derivatives do not coordinate anything much...
- ... except Th⁴⁺

A new library of HOPO-macrocycles

- 1,2-HOPO derivatives of cyclam and cyclen coordinate La³⁺, Th⁴⁺,Tb³⁺ and Lu³⁺
- 3,4-HOPO derivatives do not coordinate anything much...
- ... except Th⁴⁺

- 1,2-HOPO-**cyclen** binds
- ¹⁶¹Tb³⁺
- ¹⁷⁷Lu³⁺

at higher specific activities than

1,2-HOPO-cyclam

When "fresh" batches of ¹⁶¹Tb³⁺ and ¹⁷⁷Lu³⁺ are compared side-byside, similar specific activities are achieved for radiolabelling of 1,2-HOPO-**cyclen**

1,2-HOPO-cyclen can be radiolabelled under mild conditions (room temperature and pH 6)

For example: ¹⁶¹Tb radiolabelling

The resulting radiolabelled complexes of 1,2-HOPOcyclen are more stable in serum compared to those of 1,2-HOPO-cyclam

For example:

¹⁷⁷Lu serum stability data

Stability is not ideal

How does Tb³⁺ coordinate 1,2-HOPO-cyclen?

We postulate that 1,2-HOPOcyclen coordinates Tb³⁺ / Lu³⁺ via cyclen amines and at least two HOPO groups

1,2-HOPO-cyclen binds Th⁴⁺

1,2-HOPO-cyclen coordinates Th⁴⁺ through HOPO groups only, the system is likely dynamic and the topology of the complex is entirely different

Hydroxypyridinone derivatives

HO

3C-TRIHOPO

- Hydroxypyridinone derivatives of cyclen and cyclam exhibit tremendously rich chemistry, even if we (me) are still trying to properly figure it out...
- We (me) need to make sure we understand subtle and not-so-subtle intricacies at the coordination chemistry level
- Our derivatives bind a range of radiotherapeutic Ln and An ions
- What's next?

n = 1, **2C-DIHOPO** 2, **3C-DIHOPO**

Acknowledgements

Paul Scherrer Institute

Cristina Muller Nicholas van der Meulen Christian Vaccarin Pascal Grundler

King's College London Alex Rigby Charlotte Rivas Rory Kenrick

Dr Alex Rigby

Dr Charlotte Rivas

Current group

Natasha Patel

Rory Kenrick

Jung Sik Shin

Dr Truc Pham

Dr Rachel Nuttall

Dr Ollie Carter

Past members Dr Ingebjorg Hungnes Dr Alex Rigby Dr Charlotte Rivas Dr Jessica Jackson Dr Matt Farleigh Dr Ruslan Cusnir

¹⁷⁷Lu, pH 6.5 NaOAc, RT, 10 min

Room temperature reactions show two Lu complex species – correlating with NMR

