Modelling of Wakefields from Sub-Relativistic Beams

jonas.christ@tu-darmstadt.de

The work of J. Christ is supported by the DFG through the Graduiertenkolleg 2128 "Accelerator Science and Technology for Energy Recovery Linacs" (AccelencE).

TECHNISCHE UNIVERSITÄT

DARMSTADT

Outline

- Beam dynamics: Solvers @TEMF
- Scattered Field Formulation for Coupled Space Charge
 and Wakefield Calculations
- Results for traveling wave gun @SwissFEL

Task

- Solve Maxwell's eqs. + Eq. of Motion:
 - # Particles, Geometry, multi-scale
 Full EM-Particle in cell
 space charge / particle tracker
 wakefield solver
 - Poisson eq. in Lorentz frame
 - Free-space assumption
 - No transient fields

- EM wave eq.
- Particles => current
- No intermediate feedback

PBCI

Solver @TEMF:

REPTIL

Particle Tracking in REPTIL

- Solve Space Charge field + Eqs. of motion
 - Assume particle cloud in free space + nearly-uniform movement
 - Electrostatic field solver in particle's rest frame

Particle Tracking in REPTIL

Solver

P2P

Barnes-Hut

PFMM

MFMM

FFT

- **Relativistic Particle Tracker for** Injectors and Linacs (REPTIL)
 - Nx6D time domain, multi-node & multithread
 - Space Charge Field solvers: Grid-based (e.g. 3D-FFT) or non-grid (FMM, LW)
 - Time integrators (adaptive, symplectic, ...)
 - Fieldmaps, optimization engine

$$\varphi(x) = \int G(x - x')\varrho(x')d^Dx$$

Integrator

Leap-Frog

RK4

RK-Fehlberg

Paraxial

Undulator

Problem

Beam

Field

Quadrupole

Multipole

Wakefield Simulation in PBCI

Wakefield Simulation in PBCI

- Wakefield solver Parallel Beam Cavity Interaction (PBCI)
 - Especially for short relativistic bunches, long transients
 - 3D time domain, boundary conformal FIT / FDTD Maxwell EM-wave solver, multinode & multi-thread
 - Moving window, dispersion-free along z (operator splitting), PML, SIBC, conducting material, indirect integration

Scattered Field Formulation

Scattered Field Formulation in FIT

- Realization in FIT staircase:
 - Modification of Faraday's law at PEC boundary

$$\frac{d}{dt} \begin{pmatrix} h_{\rm s} \\ e_{\rm s} \end{pmatrix} = \begin{pmatrix} 0 & -M_{\mu}^{-1}C \\ M_{\varepsilon}^{-1}C^T & 0 \end{pmatrix} \begin{pmatrix} h_{\rm s} \\ e_{\rm s} \end{pmatrix} - \begin{pmatrix} M_{\mu}^{-1} j_{\rm mag} \\ 0 \end{pmatrix}$$

Equivalent magnetic current at the boundary

 $j_{\rm mag} = C \ I_l \ e_{\rm i}$

• With local interpolation matrix $I_l = \begin{cases} -1 & \text{if edge in PEC} \\ 0 & \text{else} \end{cases}$

• Rest of FIT- operators remain the same

$$e = e_{\rm s} + e_{\rm i}$$

Scattered Field Formulation in FIT II

- Realization in FIT conforming boundaries:
 - Modification of Faraday's law at PEC boundary

$$\frac{d}{dt} \binom{h_{\rm s}}{e_{\rm s}} = \begin{pmatrix} 0 & -M_{\mu}^{-1}C \\ M_{\varepsilon}^{-1}C^T & 0 \end{pmatrix} \binom{h_{\rm s}}{e_{\rm s}} - \binom{M_{\mu}^{-1}j_{\rm mag}}{0}$$

Restriction of incident field to conformal lengths /

areas

$$e_{j} = e_{s,j} + \frac{l_{\text{cut},j}}{l_{j}} e_{i,j} \qquad b_{k} = b_{s,k} + \frac{A_{\text{cut},k}}{A_{k}} b_{i,k}$$
$$\Rightarrow j_{\text{mag}} = C I_{L} e_{i} + I_{A} C e_{i}$$

• Rest of FIT- operators remain the same

Coupling: PBCI + REPTIL

- Mesh-free, fast evaluation of space-charge farfield on boundary: FMM
- Solvers independent (grid, time step, optimization, ...)
 - Arbitrary geometry
 - Arbitrary beam dynamics

Validation: Space Charge Impedance

• Space charge impedance in a uniform beam pipe

Analytical estimation for stationary state:

Traveling Wave Gun Model

- 12-cell TW gun under design at SwissFEL (Lucas)
- Narrow, long geometry: 5mm iris radius, ~22cm acceleration path length

TU Darmstadt | Institute TEMF | Jonas Christ, Erion Gjonaj | 14

Traveling Wave Gun Model

- 12-cell TW gun under design at • SwissFEL (Lucas)
- Narrow, long geometry: 5mm iris radius, • ~22cm acceleration path length
- Video: fields build up over time •

Bunch:	
Charge	0.2nC
Length	~0.5mm
Size	~1mm
Energy	13MeV at gun exit

cmp. IPAC'24, DOI: 10.18429/JACoW-IPAC2024-WEPR71

٨Y

Energy Chirp

~10% RMS energy spread reduction

- Wakefields reduce energy chirp in gun
 - Wakes reach tail first

•

at end of gun

Full Injector Line Simulation

• Field in beam pipe approaches space charge impedance field

 \rightarrow Weak coupling of wakefields to beam pipe and downstream sections

 \rightarrow Include wakefields up to first accelerating section, continue with space charge solver only

Full Injector Line Simulation

- Field in beam pipe approaches space charge impedance field
 - \rightarrow Weak coupling of wakefields to beam pipe and downstream sections
 - \rightarrow Include wakefields up to first accelerating section, continue with space charge solver only
- Difference in RMS energy spread:

5.5keV (simulated), 7.1keV (analytical)

TU Darmstadt | Institute TEMF | Jonas Christ, Erion Gjonaj | 19

LI Devreetedt | hetitute TEME | James Christ Erien Cionsi | 40

Quasi-Traveling Wave Gun Model

- Motivation: Natsui, Yoshida (KEK, IPAC'14)
- 7 Side-Coupled standing wave cavities (alternating field phase)
- Bending of acc. Field -> RF-focusing, no solenoid required
- High bunch charge
- Narrow, long geometry: 3.5mm iris radius, ~20cm acceleration path length

Quasi-Traveling Wave Gun Model

TU Darmstadt | Institute TEMF | Jonas Christ, Erion Gjonaj | 20

Summary

- Coupled Simulations:
 - Space Charge Solver REPTIL
 - Wakefield Solver PBCI
 - Scattered Field Formulation
- Electron Gun:
 - Effect of wakes on energy chirp
 - Limited coupling to downstream section
- Upcoming: simulation of bunch compressor

TECHNISCHE

