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Introduction and highlights



Motivation for developing RF-Track: the TULIP project

A linac for hadron therapy featuring high-gradient S-band backward travelling-wave structures

S. Benedetti, A. Grudiev, and A. Latina, “High gradient linac for proton therapy”, Phys. Rev. Accel. Beams 20, 040101 [2017]
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RF-Track requisites (and highlights)

Requisites:

• Handle Complex 3D field maps of oscillating RF electromagnetic fields:
- Standing-wave; Backward ≪ and Forward ≫ travelling-wave fields

• Provide conventional elements
• Be flexible and programmable

Highlights: The result is a code that can simulate particles with any mass and charge

• No approximations, like β ≃ 1 or γ ≫ 1, are made
- It is currently used to simulate: protons, ions, electrons, positrons, muons, ... from creation to ultra-relativistic

• It can simulate mixed-species beams

• Implements high-order adaptive integration algorithms
- Can do back-tracking

• Implements collective effects

• Is modular, flexible, and fast
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RF-Track: minimalistic and physics-oriented

RF-Track is written in parallel and optimised C++, focusing only on accelerator simulation:

• Flexible accelerator description and beam models

• Accurate integration of the equations of motion

• Robust interpolation of field maps

• Collective effects

• Easy realisation of imperfections and correction algorithms

For “all the rest” (ODE solvers, random number generation, special functions, . . . ), it relies on two robust and
well-known open-source libraries:

• GSL, "Gnu Scientific Library", provides a wide range of mathematical routines such as high-quality random
number generators, ODE integrators, linear algebra, and much more

• FFTW, "Fastest Fourier Transform in the West", arguably the fastest free library to compute discrete Fourier
transforms

RF-Track provides two alternative user interfaces: one in Octave and one in Python.
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Beam models



Beam models: tracking in space and in time

RF-Track implements two beam models:

1. Beam moving in space: Bunch6d()
• All particles have the same S position
• The equations of motion are integrated in dS: S → S + dS (moves the bunch element by element)(

x [mm], x ′ [mrad], y [mm], y ′ [mrad], t [mm/c], P [MeV/c]
)

2. Beam moving in time: Bunch6dT()
• All particles are considered at same time t
• The equations of motion are integrated in dt: t → t + dt
• Particles can have Pz < 0 or even Pz = 0 : particles can move backward

(X [mm], Px [MeV/c], Y [mm], Py [MeV/c], Z [mm], Pz [MeV/c])

For each macro particle also considers

m : mass [MeV/c2], Q : charge [e+]

N : nb of particles / macroparticle, t0 : creation time(⋆) τ : lifetime [NEW!]

(⋆) only for beams moving in time.

RF-Track can simulate the creation and the decay of particles.
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Bunch creation

Particle bunches can be created in multiple ways:

1. From arbitrary distributions, directly importing the phase space

2. From a set of Twiss parameters

3. From a Photocathode simulation similar to ASTRA’s “Generator”
1D distributions: ’gaussian’, ’uniform’, ’plateau’, ’parabola’

2D distributions: ’radial-uniform’, ’radial-pleateau’, ’radial-gaussian’,
’radial-parabola’

3D distributions: ’ellipsoid’, ’isotropic’, ’fermi-dirac’

Radial-uniform Radial-pleteau Radial-parabola Generalized Gaussian
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Multi-bunch beams

Since version 2.3.0 (alpha release), it is possible to create multi-bunch beams.

Example of multi-bunch beam definition:

A native multi-bunch implementation ease and speed up the computation of bunch-to-bunch collective effects.
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Two tracking environments

Lattice: for integration in space

• A list of elements

• Tracks the particles element by element, along the longitudinal direction

• Elements can be arbitrarily misaligned

Volume: for integration in time

• A portion of 3D space

• Elements can be placed anywhere

• Element misalignment via Euler angles (pitch, yaw, roll)

• Allows element overlap

• Allows creation of particles

• Can simulate cathodes and field emission

• Includes cathode mirror charges

Lattice

Volume
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Lattice and Volume

Lattice and Volume can be used together or separately. Injector example:

Typically, Volume (time integration) is suitable for space-charge dominated regimes, whereas Lattice (space integration)
is suitable for ultra-relativistic regions of the machine.

Volumes can be inserted in a Lattice. And Lattices can be placed in a Volume.
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Example of Volume

%% Load RF-Track 
RF_Track; 

%% Declare two coils
Cm = Coil(0.01, -1.0, 0.2); % L length [m], 

% B field at the center of the coil [T], 
% R radius [m] 

Cp = Coil(0.01, +1.0, 0.2); 

%% Create a Volume
V = Volume(); 

% Add the two coils
V.add(Cm, 0, 0, -0.5);
V.add(Cp, 0, 0, 0.5); 

% Set the boundaries
V.set_s0(-1.0); % -1 m 
V.set_s1(+1.0); % +1 m 
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Example of Lattice
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Beamline elements



Overview of the beamline elements

1. Standard set of matrix-based symplectic elements:

• Sector bend
• Quadrupole
• Drift (with an optional constant electric and magnetic fields, can be used to simulate e.g.,

rectangular bends, or solenoids)

2. Field maps (see next slides)

3. Special elements:
• Absorber (predefined materials: air, water, beryllium, lithium, tungsten, ... )
• 3D analytic fields: Coil and Solenoid, Standing-wave and Traveling-wave structures, Adiabatic

matching devices, Toroidal Harmonics
• LaserBeam for Inverse Compton Scattering simulations
• Electron Cooler
• Transfer Line: tracks through an arbitrary lattice given in form of Twiss table (phase advances,

momentum compaction, 1st and 2nd order chromaticity are considered)
• Screens: with any orientation in space
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Field maps

RF-Track can import several types of oscillating RF field maps, which are interpolated linearly or cubically

• 1D field maps (on-axis field)

• It uses Maxwell’s equations to reconstruct the 3D fields off-axis, assuming cylindrical symmetry

• 2D field maps: given a field on a plane, applies cylindrical symmetry

• 3D field maps of oscillating electro-magnetic fields

• It accepts 3D meshes of complex numbers
• It accepts quarter field maps and performs mirroring automatically
• For RF fields, it allows to specify the input power provided to the structure

It also provides elements dedicated to StaticElectric and StaticMagnetic field maps

• They ensure curl-free (electric) and divergence-free (magnetic) interpolation of the field
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The element “Static_Magnetic_FieldMap”

Static_Magnetic_FieldMap corrects any input field map (whether measured or computed), and makes it physically
correct. This ensures symplecticity

Magnetic chicane for the FCC-ee’s positron source.

[ Field map courtesy of Riccardo Zennaro (PSI); Plots courtesy of Yuting Wang, IJCLab ]
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Volume as a Lattice element

Example of field map:

By
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Volume as a Lattice element

Boundaries of a Volume:

S0 S1

By

The boundaries of a Volume can have any orientation in space.
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Volume as a Lattice element

Boundaries of a Volume:

S0 S1

By

Lattice 2Lattice 1

A Volume can be sandwiched between two Lattices.
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Integration algorithms

In field maps and analytic fields, RF-Track integrates the equations of motion numerically:

• The default is: "leapfrog":
⋆ super fast, second-order accurate

• “analytic” algorithm:
⋆ integration assuming a locally-constant EM field

• Higher-order, adaptive algorithms provided by GSL:
⋆"rk2" Runge-Kutta (2, 3) ⋆"rkck" Runge-Kutta Cash-Karp (4, 5)
⋆"rk4" 4th order Runge-Kutta ⋆"rk8pd" Runge-Kutta Prince-Dormand (8, 9)
⋆"rkf45" Runge-Kutta-Fehlberg (4, 5) ⋆"msadams" multistep Adams in Nordsieck form

(order varies dynamically between 1 and 12)

(backtracking is possible)
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The element “LaserBeam” and Inverse Compton Scattering

A collision with a LaserBeam can be added to any Lattice, using the element “LaserBeam”:

The photons are added to the bunch and transported through the beam line.
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The element “TransferLine”

The element TransferLine allows to insert a full MAD-X lattice into RF-Track, just using the Twiss file.

Collective effects can be distributed along the lattice.
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Elements hierarchy

RF_Field

TimeDependent_Field

BoundlessGenericField

Element

Drift

ConstantField CoilMagnetic_FieldMapSextupole Multipole SpaceCharge_Field ToroidalHarmonicsAdiabaticMatchingDevice

Lattice Volume

Absorber

TransferLine Electron Cooler

BpmLaserBeam

RF_FieldMap SW_Structure TW_Structure

SBend Quadrupole

Solenoid

Field maps 1D, 2D, 3D

Analytic fields 3D

Matrix based

Special elements
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Collective and Single-particle
effects



Overview of the collective and single-particle effects

Collective effects:
• Space-charge, full 3D, Particle-in-Cell (FFT) or P2P

• Full computation of electric and magnetic effects
• Beam-beam effects are automatically included
• Optionally considers mirror charges at cathode

• Short-range wakefields:
• Karl Bane’s approximation
• 1D user-defined spline, longitudinal monopole or transverse dipole

• Two models of Long-range wakefields:
1. Sum of damped oscillators. Takes modes: frequency, amplitude, and Q factor
2. 1D user-defined spline, longitudinal monopole or transverse dipole

• Self-consistent Beam loading effect in TW and SW structures
• Given: R/Q, group velocity, and Q factors along the structure, computes the beam loaded fields

Single-particle effects:
• Incoherent Synchrotron Radiation (from any fields)
• Magnetic multipole kicks for imperfection studies
• Multiple Coulomb Scattering (recently updated)

Effects can be attached to any element, in any number.
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Space-charge effects (1/4)

Benchmark against ASTRA:

Simulation of the CLEAR photoinjector:

• Q = 600 pC

• Gun, Ez = 100 MV/m,  f = 3 GHz

• Peak energy phase for the reference particle

• Solenoid, Bz = 0.25 T ON | OFF

• Space-charge ON | OFF

50’000 macro particles

Solenoid OFF – Space-charge OFF
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Space-charge effects (2/4)

Benchmark against ASTRA:

Simulation of the CLEAR photoinjector:

• Q = 600 pC

• Gun, Ez = 100 MV/m,  f = 3 GHz

• Peak energy phase for the reference particle

• Solenoid, Bz = 0.25 T ON | OFF

• Space-charge ON | OFF

50’000 macro particles

Solenoid OFF – Space-charge ON
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Space-charge effects (3/4)

Benchmark against ASTRA:

Simulation of the CLEAR photoinjector:

• Q = 600 pC

• Gun, Ez = 100 MV/m,  f = 3 GHz

• Peak energy phase for the reference particle

• Solenoid, Bz = 0.25 T ON | OFF

• Space-charge ON | OFF

50’000 macro particles

Solenoid ON – Space-charge ON
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Space-charge effects (4/4)

Electrostatic Gun (Astra, GPT, RFT)

Ez = -1 MV/m
B = realistic solenoid, B max = 0.25 T
No SC
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Beam loading in traveling-wave structures
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A power diffusive model computes beam loaded field in an RF structure.
Both transient and steady state can be computed.
Beam-loading compensation schemes can be computed.

Usage example:

The plots show beam loading effects in a CLIC accelerator structure 
with a beam of 352 x 600 pC bunches with a 2 GHz bunch spacing.
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Beam loading in standing-wave structures

Beam-loading effects have also been computed in standing-wave structures.

Follow the example of the photoinjector of the CLEAR test facility at CERN. The plots show the beam-induced energy loss 
of a train of 150 bunches with 1.5 GHz  bunch-spacing, as a function of the bunch charge.

(A) Experimental measurements
(B) RF-Track simulation

J. H. Olivares et al., “Implementation of the beam-loading effect in the tracking code RF-track based on a power-diffusive model”, Frontiers in Physics, 2024
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Examples of applications



Examples of applications

RF-Track is currently used for the design, optimisation, and simulation of:

- Medical applications (DEFT facility, collaboration CERN, CHUV, THERYQ), the CLIC and FCC-ee positron sources
(CERN, IJCLab, PSI) and FCC-ee pre-injector linacs (CERN, PSI)

- Linac4 (CERN), Inverse-Compton Scattering sources (CERN, IJCLab, INFN Ferrara, Korea University), and the
Cooling channel of a future Muon Collider (CERN), etc.

I’ll show five examples:

1. ADAM’s RFQ

2. ThomX ICS Source

3. Electron Cooling at LEIR

4. Multiple Coulomb Scattering

5. Muon Cooling Channel
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1. The RFQ of the ADAM linear accelerator for proton therapy

«LIGHT is a normal conducting 230 MeV medical 
proton linear accelerator being constructed by ADAM. 

For the commissioning, RFQ beam dynamics
simulations were performed with RF-Track by
simulating the particles through the 3D field map.»
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V. Dimov et al., “Beam commissioning of the 750 MHz proton RFQ for the LIGHT prototype”, IPAC2018, Vancouver, BC, Canada, TUPAF002
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2. ThomX ICS source (1/4)

RF-Track helped to solve a serious design issue:

u 8 Dipoles 

u 24 Quadrupoles

u 12 Sextupoles

u 2 Kickers 

u 1 Septum 

u 1 RF cavity

u 12 BPM 

u 12 Correctors

Working point 3.17/1.64

28x40 mm

1

ThomX SR: L = 18 m, T = 60 ns, frep = 16.7 MHz

Very dense integration

Value/UnitsParameter
50-70 MeVBeam energy
1 nCBunch Charge
~30 psBunch length (rms)
18 mCircumference
16.7 MHzRevolution frequency
16.7 mACurrent
500/30 MHzRF frequency/Harmonics
0.0125 - 0.025Momentum compaction
3.17/1.64Betatron tunes
-9/-13Natural chromaticity
1.2/0.6 sDamping time trans./long.
50 Hz (20 ms)Repetition frequency
70 μmBeam size at the IP
300 kV (500 kV max)Nominal RF Voltage/cavity

1.57 eVEnergy loss per turn

IP

Slide courtesy of Viacheslav Kubytskyi (IJCLab)
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2. ThomX ICS source (2/4)

An unexpected find: shorter circumference

u The RF frequency is found experimentally to be 

0.3 - 0.4 MHz higher than the nominal. 
What is the reason? 

u Need explicit simulation!

Short and small-radius dipoles, long fringe fields

Nominal optics MCF 0.014
Measured orbits

Below 500.27 MHz the beam is lost 

Slide courtesy of Viacheslav Kubytskyi (IJCLab)
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2. ThomX ICS source (3/4)

It was found that the beam trajectory in the dipoles is shorter wrt. to the 
ideal path => shorter pathlength and so smaller total circumference

“Experiment on the table” with RF-track 
First study to measure ring frequency : 

• Lattice with dipoles represented by SBEND (usual way) :  F = 500.02 MHz 

• Lattice with dipoles represented by VOLUME with realistic magnetic field : F =500.38 MHz, 
dispersive orbit. The same effect as in the experiment!

Big step in understanding of the problem

100 turns with realistic dipoles

Slide courtesy of Viacheslav Kubytskyi (IJCLab)
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2. ThomX ICS source (4/4)

“Experiment on the table” with RF-track 
Studies to compensate dipole fringing fields and retrieve nominal frequency by:

- Displacement of dipole

- Adding metallic plates to reduce fringing field

- Mechanical extension of the ring by +12mm

Correct scaling of 
magnetic field for the 
magnet with plates allows 
to recover the nominal 
frequency  

Scaled fieldmap for dipoles with MP 

Slide courtesy of Viacheslav Kubytskyi (IJCLab)
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3. Electron Cooling at the CERN’s Low Energy Ion Ring (LEIR)

In 2019 we measured and benchmarked the cooling force as a function of ion-electron relative velocity measured at LEIR (blue) and
simulated with RF-Track (red).

Very good agreement between measurements and simulations.
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4. Absorber element and Multiple Coulomb Scattering

Improvement at large scattering angles [ Credits: Bernd Stechauner (CERN) ]
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5. Muon cooling channel optimisation

Credits: Elena Fol (CERN)

Longitudinal phase space before and after two cellsTransverse phase space along two cells

Twiss parameters in the first cell Cooling channel with 8 cells

This simulation includes: a constant solenoid field, realistic 3D solenoid, several standing-wave structures, and the
absorber, simultaneously together and overlapping.
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Summary and future developments

RF-Track:

• Minimalistic, parallel, fast – implements several collective effects

• Friendly and flexible, it uses Octave and Python as user interfaces

• Ideal for nontrivial optimisations and numerical experimentations

• Currently used to design and optimise: FCC-ee pre-injectors, CLIC and FCC-ee positron sources, muon cooling
channel, RFQ, Linac4, ICS sources, medical accelerators...

Next steps:

• Implement Intra-beam scattering (Paula), 3D Coherent synchrotron radiation (ASAP)

• Interfaces to SUPERFISH and CST Studio (done)

Pre-compiled binaries and more up-to-date documentation are available here:

• https://gitlab.cern.ch/rf-track

Python users can use:

• pip install RF_Track
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Thank you for your attention!
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