Necessary conditions to enable SSMB in storage rings ...with nonlinear phase slippage

Arnold Kruschinski on behalf of the SSMB collaboration

18 September 2024

Arnold Kruschinski [Necessary conditions for SSMB in storage rings](#page-31-0) 18 September 2024 1/20

Table of Contents

[Introduction](#page-2-0)

- [What is SSMB?](#page-2-0)
- [The SSMB PoP experiment at the MLS](#page-3-0)
- [Modeling the microbunching process](#page-4-0)
	- [Analytical formula for the bunching factor](#page-10-0)
	- [Comparison with experiment](#page-13-0)

[Microbunching with nonlinear phase slippage](#page-17-0)

- [Simulation results](#page-18-0)
- [Static and dynamic phase slippage](#page-20-0)
- [Comparison with experiment](#page-29-0)

[Conclusion](#page-30-0)

The idea of steady-state microbunching

- Goal: Coherent radiation from microbunched electron beams inside a storage ring
- Ingredients:
	- Longitudinal focusing at optical wavelengths
	- Ultra-low phase slippage
	- Suitable scheme to achieve bunch lengths < 10 nm
- Vision: kilowatt level EUV power for spectroscopy and lithography

The Metrology Light Source and the SSMB proof-of-principle experiment

イロト イ押 トイヨ トイヨ

One-turn maps for momentum deviation $\delta = \frac{\Delta p}{p_0}$ $\frac{\Delta p}{p_0}$ and longitudinal particle postion z:

$$
\delta_{m+1} = \delta_m + A_m \sin (k_L z_m),
$$

$$
z_{m+1}=z_m-C_0\,\eta\,\delta_{m+1}.
$$

One-turn maps for momentum deviation $\delta = \frac{\Delta p}{p_0}$ $\frac{\Delta p}{p_0}$ and longitudinal particle postion z:

$$
\delta_{m+1} = \delta_m + A_m \sin (k_L z_m),
$$

$$
z_{m+1}=z_m-C_0\,\eta\,\delta_{m+1}.
$$

Single shot modulation: energy modulation amplitude $A_0 = A$ for revolution number $m = 0$, $A_m = 0$ otherwise

Momentum compaction α :

Phase slippage η :

 299

 \triangleright \rightarrow \equiv

Momentum compaction α :

$$
\frac{\Delta C}{C_0} = \alpha \frac{\Delta p}{p_0}
$$
\n
$$
\text{relation: } \eta = \alpha - \frac{1}{\gamma^2}
$$
\n
$$
\eta \approx \alpha
$$

Phase slippage η :

$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$

K ロ ▶ K 何 ▶ K 日

MLS standard low-alpha: e [−] @ 630 MeV: $\gamma^{-2}=6.6\cdot 10^{-7},$ $\alpha \approx 10^{-4}$

 299

 \triangleright \rightarrow \exists

Momentum compaction α :

$$
\frac{\Delta C}{C_0} = \alpha \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$

- 三

 299

Phase slippage η :

 p_0

 $\alpha \approx 10^{-5}$

[−] @ 250 MeV:

イロト イ押ト イヨト イヨト

Momentum compaction α :

Phase slippage η :

$$
\frac{\Delta C}{C_0} = \alpha \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}
$$
\n
$$
\frac{\Delta T}{T_0} = \eta \frac{\
$$

\Rightarrow for SSMB, always use phase slippage!

 \rightarrow it is what we need to get the longitudinal slip Δz after one revolution:

$$
\Delta z = -v\Delta T = -\beta c T_0 \eta \frac{\Delta p}{p_0}.
$$

Arnold Kruschinski [Necessary conditions for SSMB in storage rings](#page-0-0) 18 September 2024 6/20

 299

イロト イ押ト イヨト イヨ

One-turn maps for momentum deviation $\delta = \frac{\Delta p}{p_0}$ $\frac{\Delta p}{p_0}$ and longitudinal particle postion z:

$$
\delta_{m+1} = \delta_m + A_m \sin (k_L z_m),
$$

$$
z_{m+1}=z_m-C_0\,\eta\,\delta_{m+1}.
$$

One-turn maps for momentum deviation $\delta = \frac{\Delta p}{p_0}$ $\frac{\Delta p}{p_0}$ and longitudinal particle postion z:

$$
\delta_{m+1} = \delta_m + A_m \sin (k_L z_m),
$$

$$
z_{m+1}=z_m-C_0\,\eta\,\delta_{m+1}.
$$

 \rightarrow Calculate bunching factor from final distribution $\rho_m(z)$:

$$
b_m(k)=\int_{-\infty}^{\infty}e^{-ikz}\,\rho_m(z)\,\mathrm{d} z=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-ikz_m(z_0,\delta_0)}\,\rho_0(z_0,\delta_0)\,\mathrm{d} z_0\mathrm{d}\delta_0.
$$

One-turn maps for momentum deviation $\delta = \frac{\Delta p}{p_0}$ $\frac{\Delta p}{p_0}$ and longitudinal particle postion z:

$$
\delta_{m+1} = \delta_m + A_m \sin (k_L z_m),
$$

$$
z_{m+1}=z_m-C_0\,\eta\,\delta_{m+1}.
$$

 \rightarrow Calculate bunching factor from final distribution $\rho_m(z)$:

$$
b_m(k)=\int_{-\infty}^{\infty}e^{-ikz}\,\rho_m(z)\,\mathrm{d} z=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-ikz_m(z_0,\delta_0)}\,\rho_0(z_0,\delta_0)\,\mathrm{d} z_0\mathrm{d}\delta_0.
$$

 \rightarrow Analytical formula can be derived under certain assumptions:

$$
b_{n,m} \equiv b_m(nk_L) = J_n(nmk_L\eta_0C_0A) \cdot \exp\left[-\frac{(nk_L)^2}{2}\left\{(m\eta_0C_0\sigma_\delta)^2 + 4\epsilon_{x,y}\mathcal{H}_{x,y}\sin^2(m\pi\nu_{x,y})\right\}\right]
$$

Verifying the analytical formula in experiment

$$
b_{n,m} \equiv b_m(nk_L) = J_n(nmk_L\eta_0C_0A) \cdot \exp\left[-\frac{(nk_L)^2}{2}\left\{(m\eta_0C_0\sigma_\delta)^2 + 4\epsilon_{x,y}\mathcal{H}_{x,y}\sin^2(m\pi\nu_{x,y})\right\}\right]
$$

 \rightarrow this formula has been shown experimentally to accurately predict the dependence of microbunching formation on a number of parameters. \rightarrow Paper: A. Kruschinski, X. Deng et al., "Confirming the theoretical foudation of steady-state microbunching", Communications Physics 7, 160 (2024)

Dependence on modulation amplitude

$$
b_{n,m} \equiv b_m(nk_L) = J_n(nmk_L\eta_0C_0A) \cdot \exp\left[-\frac{(nk_L)^2}{2}\left\{(m\eta_0C_0\sigma_\delta)^2 + 4\epsilon_{x,y}\mathcal{H}_{x,y}\sin^2(m\pi\nu_{x,y})\right\}\right]
$$

- Modulation amplitude proportional to laser electric field: $A \propto \mathcal{E}_{\mathsf{L}} \propto$ √ $P_{L}\propto$ ∣∪∣ E_{L}
- (Total laser pulse energy proportional to instantaneous power for constant pulse shape)
- Coherent radiation power $P_\mathsf{coh} \propto |b|^2$
- $\Rightarrow P_{\text{coh}} = a_1 | J_1(a_2)$ √ $\vert E_L\rangle\vert$ 2

Dependence on transverse-longitudinal coupling

$$
b_{n,m} \equiv b_m(nk_L) = J_n(nmk_L\eta_0C_0A) \cdot \exp\left[-\frac{(nk_L)^2}{2}\left\{(m\eta_0C_0\sigma_\delta)^2 + 4\epsilon_{x,y}\mathcal{H}_{x,y}\sin^2(m\pi\nu_{x,y})\right\}\right]
$$

Transverse-longitudinal coupling (TLC) can disrupt microbunching formation

- Impact proportional to transverse emittance
- Example on the right for the vertical plane; MLS tune: $\nu_{\rm v} = 2.23$
- Impact of TLC is reduced if $m \cdot \nu_v$ is close to an $\frac{100}{125}$ $\frac{150}{175}$ $\frac{175}{200}$ $\frac{225}{225}$

Verifying the analytical formula in experiment

$$
b_{n,m} \equiv b_m(nk_L) = J_n(nmk_L\eta_0C_0A) \cdot \exp\left[-\frac{(nk_L)^2}{2}\left\{(m\eta_0C_0\sigma_\delta)^2 + 4\epsilon_{x,y}\mathcal{H}_{x,y}\sin^2(m\pi\nu_{x,y})\right\}\right]
$$

 \rightarrow this formula has been shown experimentally to accurately predict the dependence of microbunching formation on a number of parameters. \rightarrow Paper: A. Kruschinski, X. Deng et al., "Confirming the theoretical foudation of steady-state microbunching", Communications Physics 7, 160 (2024)

 \Rightarrow But: it assumes momentum-independent phase slippage $\eta = \eta_0 = \text{const.}$, and cannot describe impact of nonlinear phase slippage $\eta(\delta)$.

 QQ

One-turn maps for momentum deviation $\delta = \frac{\Delta p}{p_0}$ $\frac{\Delta p}{p_0}$ and longitudinal particle postion z:

$$
\delta_{m+1} = \delta_m + A_m \sin (k_L z_m),
$$

$$
z_{m+1}=z_m-C_0\,\eta\,\delta_{m+1}.
$$

 \rightarrow Instead of analytical formula, use simulation with nonlinear phase slippage

$$
\eta(\delta)=\eta_0+\eta_1\,\delta+\eta_2\,\delta^2+\ldots
$$

and calculate bunching factor from the final distribution using DFT.

 Ω

Simulation results: Microbunching with nonlinear dynamic phase slippage

Simulation set up with a uniform particle distribution around $\delta = 0$.

2.00 2.00 0.54 0.486 1.75 1.75 Results: bunching factor at 0.48 0.432 1.50 1.50 $0.42.$ first laser harmonic, one turn 0.378 $0.36⁴$ 1.25 $\frac{1}{2}$ 1.25
 $\frac{1}{6}$ 1.00 1.25 0.324 $\frac{4}{5}$ 1.25
 $\frac{1}{2}$ 1.00 after modulation vs. first three 0.30 -0.270 $\stackrel{1}{\scriptstyle\sim}$ 0.24 0.216 $\frac{5}{5}$ 0.75 $\frac{5}{5}$ 0.75 orders of dynamic phase 0.18 -0.162 $\frac{6}{3}$ 0.50 0.50 slippage: 0.12 0.108 $0.25 0.25$ 0.06 0.054 0.00 0.000 0.00 0.00 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 ó 20 40 80° 100 $\eta_{syn,1}$ $\eta_{syn,2}$

 \Rightarrow Optimal bunching factor at $\eta_{\mathsf{syn},1}=0$ and suitable value of $\eta_{\mathsf{syn},0} \approx$ 2 \cdot 10 $^{-5}$, depending on modulation amplitude. Value of $\eta_{syn,2}$ is uncritical as long as it is not too large.

Simulation results: Microbunching with nonlinear dynamic phase slippage

Simulation set up with a uniform particle distribution around $\delta = 0$.

2.00 2.00 0.54 0.486 1.75 1.75 Results: bunching factor at 0.48 0.432 1.50 1.50 $0.42.$ first laser harmonic, one turn 0.378 $0.36 =$ 1.25 $\frac{4}{9}$ 1.25 $\frac{1}{9}$
 $\frac{1}{9}$ 1.00 $\frac{1}{2}$ 1.25
 $\frac{1}{6}$ 1.00 0.324 after modulation vs. first three 0.30 -0.270 $\stackrel{1}{\scriptstyle\sim}$ 0.24 0.216 $\frac{5}{5}$ 0.75. orders of dynamic phase $\frac{8}{5}$ 0.75. -0.18 -0.162 $\frac{6}{3}$ 0.50 0.50 0.12 slippage: 0.108 $0.25 0.25$ 0.054 0.06 0.00 0.000 0.00 0.00 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 ó 20 80° 100 $\eta_{syn,1}$ $\eta_{syn,2}$

 \Rightarrow Optimal bunching factor at $\eta_{\mathsf{syn},1}=0$ and suitable value of $\eta_{\mathsf{syn},0} \approx$ 2 \cdot 10 $^{-5}$, depending on modulation amplitude. Value of $\eta_{syn,2}$ is uncritical as long as it is not too large.

 \Rightarrow What is "dynamic phase slippage" η_{syn} ?

$$
\frac{\Delta T}{T_0} = \eta(\delta) \delta, \quad \text{with } \delta = \frac{\Delta p}{p_0}
$$

э

 299

 $A \Box B$ $A \Box B$ $A \Box B$

$$
\frac{\Delta T}{T_0} = \eta(\delta) \delta, \text{ with } \delta = \frac{\Delta p}{p_0}
$$

$$
\rightarrow \text{ what is } p_0?
$$

э

 299

 $A \Box B$ $A \Box B$ $A \Box B$

$$
\frac{\Delta T}{T_0} = \eta(\delta) \delta, \text{ with } \delta = \frac{\Delta p}{p_0}
$$

$$
\rightarrow \text{ what is } p_0?
$$

 \Rightarrow Momentum of reference particle with orbit through centers of all magnets. But this orbit is only stationary if the rf frequency matches!

 \Rightarrow To deal with changes of fixed point momentum, define a dynamic phase slippage relative to the fixed point momentum p_{FP} . 290

Arnold Kruschinski [Necessary conditions for SSMB in storage rings](#page-0-0) 18 September 2024 14/20

Defining static and dynamic phase slippage

Static reference momentum p_0 from static reference rf frequency $f_{\text{rf,0}}$:

$$
T_0=T(p_0)=\frac{h}{f_{\text{rf},0}}.
$$

$$
\Rightarrow
$$
 Static phase slippage η :

$$
\frac{T-T_0}{T_0}=\eta\cdot\frac{p-p_0}{p_0}.
$$

Reference momentum p_{FP} from rf frequency f_{rf} (which may be varied):

$$
T_{\text{FP}} = T(p_{\text{FP}}) = \frac{h}{f_{\text{rf}}}.
$$

 \Rightarrow Dynamic phase slippage η_{syn} :

$$
\frac{T - T_{\text{FP}}}{T_{\text{FP}}} = \eta_{\text{syn}} \cdot \frac{p - p_{\text{FP}}}{p_{\text{FP}}}
$$

Defining static and dynamic phase slippage

Static reference momentum p_0 from static reference rf frequency $f_{\text{rf,0}}$:

$$
T_0=T(p_0)=\frac{h}{f_{\text{rf},0}}.
$$

 \Rightarrow Static phase slippage η :

Reference momentum p_{FP} from rf frequency f_{rf} (which may be varied):

$$
T_{\text{FP}} = T(p_{\text{FP}}) = \frac{h}{f_{\text{rf}}}.
$$

 \Rightarrow Dynamic phase slippage η_{syn} :

$$
\frac{T-T_0}{T_0} = \eta \cdot \frac{p-p_0}{p_0}.
$$
\n
$$
\frac{T-T_{FP}}{T_{FP}} = \eta_{syn} \cdot \frac{p-p_{FP}}{p_{FP}}
$$

 \Rightarrow Calculate fixed point momentum shift δ_{FP} from static phase slippage and rf frequency:

$$
\eta \cdot \delta_{\text{FP}} \equiv \eta \cdot \frac{p_{\text{FP}} - p_0}{p_0} = \frac{T_{\text{FP}} - T_0}{T_0} = \frac{f_{\text{rf}}^{-1} - f_{\text{rf},0}^{-1}}{f_{\text{rf},0}} \approx -\frac{f_{\text{rf}} - f_{\text{rf},0}}{f_{\text{rf},0}}.
$$

Defining static and dynamic phase slippage

Static reference momentum p_0 from static reference rf frequency $f_{\text{rf,0}}$:

$$
T_0=T(p_0)=\frac{h}{f_{\text{rf},0}}.
$$

 \Rightarrow Static phase slippage η :

Reference momentum p_{FP} from rf frequency f_{rf} (which may be varied):

$$
T_{\text{FP}} = T(p_{\text{FP}}) = \frac{h}{f_{\text{rf}}}.
$$

 \Rightarrow Dynamic phase slippage η_{syn} :

K ロ ▶ | K 何 ▶ | K 日 |

$$
\frac{T - T_0}{T_0} = \eta \cdot \frac{p - p_0}{p_0}.
$$
\n
$$
\frac{T - T_{FP}}{T_{FP}} = \eta_{syn} \cdot \frac{p - p_{FP}}{p_{FP}}
$$

 \Rightarrow Dynamic phase slippage can be calculated from static phase slippage for any value of δ_{FP} :

$$
\eta_{\text{syn}}(\delta_{\text{syn}}, \delta_{\text{FP}}) = \frac{1}{1 + \eta(\delta_{\text{FP}}) \, \delta_{\text{FP}}} \sum_{i=1}^{\infty} \frac{1}{i!} (1 + \delta_{\text{FP}})^i \left[\frac{\mathsf{d}^i}{\mathsf{d} \delta^i} \, \eta(\delta) \, \delta \right]_{\delta = \delta_{\text{FP}}} \delta_{\text{syn}}^{i-1}
$$

 QQ

Transforming the simulation results to static phase slippage

Directly accessible in the experiment is not the dynamic phase slippage, but only the static phase slippage (which can be manipulated with multipole magnets) and the fixed point momentum (via changes to the rf frequency).

Transform the local but general simulation results from dynamic to static phase slippage:

∢ □ ▶ ⊣ [⊖]

 \rightarrow For the plot on the right, $\eta_1 = 0$ and $\eta_2 = 10$ are assumed. Different values of η_2 would change the curvature of the parabolic shapes.

Transforming the simulation results to static phase slippage

For different values of η_1 , the area of maximum bunching factor (depicted is $|b| > 0.5$) does not change shape but only moves along a parabola in the n_0 - δ FP plane:

 \Rightarrow Changes of η_1 away from the optimum can be compensated by adjusting η_0 and $\delta_{FP}!$

Experimental confirmation

In the experiment at the MLS, sextupoles are used to manipulate η_1 . η_0 (via quadrupoles) and δ_{FP} (via rf frequency) are adjusted to recover microbunching: This is possible over a wide range of η_1 , and the necessary changes also quantitatively align with the simulation results:

(the horizontal displacement of experimental points can be explain[ed](#page-28-0) [by](#page-30-0) [a](#page-28-0) [s](#page-29-0)[y](#page-30-0)[st](#page-28-0)[em](#page-29-0)[at](#page-16-0)[i](#page-17-0)[c](#page-29-0) [o](#page-30-0)[ff](#page-0-0)[set.](#page-31-0)) $Q \cap$

Conclusion

- Concept of static and dynamic phase slippage is useful not only for SSMB, also for any other applications of extreme low-alpha
- Microbunching process shows complex dynamics with a nonlinear phase slippage function
- Results obtained from simulation have been validated in experiment
- Insights into the general behavior of the SSMB PoP experiment were gained, important for preparation of next phase
- Important for any future SSMB storage ring:
	- Accurate control over higher orders of phase slippage (sextupoles, octupoles)
	- Stable conditions (minimize fluctuation of η_0 , η_1 , best with permanent magnets)

 Ω

イロト イ押 トイヨ トイヨ

Thank you for you attention!

- Ratner, D. F. and A. W. Chao. "Steady-State Microbunching in a Storage Ring for Generating Coherent Radiation". In: Phys. Rev. Lett. 105, 154801 (2010). DOI: [10.1103/PhysRevLett.105.154801](https://doi.org/10.1103/PhysRevLett.105.154801).
- \Box Li, Z. et al. "Generalized longitudinal strong focusing in a steady-state microbunching storage ring". In: Phys. Rev. Accel. Beams 26, 110701 (2023). DOI: [10.1103/PhysRevAccelBeams.26.110701](https://doi.org/10.1103/PhysRevAccelBeams.26.110701).
- F Deng, X. Theoretical and Experimental Studies on Steady-State Microbunching. Springer Theses. Singapore: Springer, 2024. DOI: [10.1007/978-981-99-5800-9](https://doi.org/10.1007/978-981-99-5800-9).
- 昂 Deng, X. et al. "Experimental demonstration of the mechanism of steady-state microbunching". In: Nature 590 (2021), pp. 576–579. DOI: [10.1038/s41586-021-03203-0](https://doi.org/10.1038/s41586-021-03203-0).
	- Kruschinski, A. et al. "Confirming the theoretical foundation of steady-state microbunching". In: Commun. Phys. 7, 160 (2024). DOI: [10.1038/s42005-024-01657-y](https://doi.org/10.1038/s42005-024-01657-y).

 QQ

イロト イ母ト イヨト イヨト