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Introduction What is SSMB?

The idea of steady-state microbunching

Goal: Coherent radiation from
microbunched electron beams inside a
storage ring

Ingredients:
Longitudinal focusing at optical
wavelengths
Ultra-low phase slippage
Suitable scheme to achieve bunch
lengths < 10 nm

Vision: kilowatt level EUV power for
spectroscopy and lithography
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Introduction The SSMB PoP experiment at the MLS

The Metrology Light Source and the SSMB proof-of-principle experiment

U125

SSMB PoP
LASER

UNDULATOR
BEAMLINE

Parameter Symbol User Op. SSMB PoP
Circumference C0 48m 48m
Beam energy E0 629MeV 250 MeV
Bunch charge qb 400 pC < 10 pC
Phase slippage η0 0.03 < 2 · 10−5

Parameter Symbol Value
Undulator period λu 125mm
Number of periods N 30
Laser wavelength λL 1064 nm
Laser repetition rate 1.25Hz
Laser pulse energy EL 400mJ
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Modeling the microbunching process

A simple model for the microbunching process

One-turn maps for momentum deviation δ = ∆p
p0

and longitudinal particle postion z :

δm+1 = δm + Am sin (kLzm) ,

zm+1 = zm − C0 η δm+1.
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Modeling the microbunching process

A simple model for the microbunching process

One-turn maps for momentum deviation δ = ∆p
p0

and longitudinal particle postion z :

δm+1 = δm + Am sin (kLzm) ,

zm+1 = zm − C0 η δm+1.

Single shot modulation: energy modulation amplitude A0 = A for revolution number m = 0,
Am = 0 otherwise
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Modeling the microbunching process

Momentum compaction vs. phase slippage

Momentum compaction α:

∆C

C0
= α

∆p

p0

Phase slippage η:

∆T

T0
= η

∆p

p0
↘ ↙

relation: η = α− 1
γ2
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Modeling the microbunching process

Momentum compaction vs. phase slippage

Momentum compaction α:

∆C

C0
= α

∆p

p0

Phase slippage η:

∆T

T0
= η

∆p

p0
↘ ↙

relation: η = α− 1
γ2

η ≈ α

MLS standard low-alpha:
e− @ 630MeV:
γ−2 = 6.6 · 10−7,
α ≈ 10−4
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Modeling the microbunching process

Momentum compaction vs. phase slippage

Momentum compaction α:

∆C

C0
= α
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Phase slippage η:
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= η

∆p

p0
↘ ↙

relation: η = α− 1
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SSMB PoP:
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γ−2 = 4.2 · 10−6,
α ≈ 10−5
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Modeling the microbunching process

Momentum compaction vs. phase slippage

Momentum compaction α:

∆C

C0
= α

∆p

p0

Phase slippage η:

∆T

T0
= η

∆p

p0
↘ ↙

relation: η = α− 1
γ2

���XXXη ≈ α

SSMB PoP:
e− @ 250MeV:
γ−2 = 4.2 · 10−6,
α ≈ 10−5

⇒ for SSMB, always use phase slippage!

→ it is what we need to get the longitudinal slip ∆z after one revolution:

∆z = −v∆T = −βcT0η
∆p

p0
.
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Modeling the microbunching process Analytical formula for the bunching factor

A simple model for the microbunching process

One-turn maps for momentum deviation δ = ∆p
p0

and longitudinal particle postion z :

δm+1 = δm + Am sin (kLzm) ,

zm+1 = zm − C0 η δm+1.
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Modeling the microbunching process Analytical formula for the bunching factor

A simple model for the microbunching process

One-turn maps for momentum deviation δ = ∆p
p0

and longitudinal particle postion z :

δm+1 = δm + Am sin (kLzm) ,

zm+1 = zm − C0 η δm+1.

→ Calculate bunching factor from final distribution ρm(z):

bm(k) =

∫ ∞
−∞

e−ikz ρm(z) dz =

∫ ∞
−∞

∫ ∞
−∞

e−ikzm(z0,δ0) ρ0(z0, δ0) dz0dδ0.
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Modeling the microbunching process Analytical formula for the bunching factor

A simple model for the microbunching process

One-turn maps for momentum deviation δ = ∆p
p0

and longitudinal particle postion z :

δm+1 = δm + Am sin (kLzm) ,

zm+1 = zm − C0 η δm+1.

→ Calculate bunching factor from final distribution ρm(z):

bm(k) =

∫ ∞
−∞

e−ikz ρm(z) dz =

∫ ∞
−∞

∫ ∞
−∞

e−ikzm(z0,δ0) ρ0(z0, δ0) dz0dδ0.

→ Analytical formula can be derived under certain assumptions:

bn,m ≡ bm(nkL) = Jn(nmkLη0C0A) · exp

[
−(nkL)2

2

{
(mη0C0σδ)

2 + 4εx ,yHx ,y sin2(mπνx ,y )
}]
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Modeling the microbunching process Comparison with experiment

Verifying the analytical formula in experiment

bn,m ≡ bm(nkL) = Jn(nmkLη0C0A) · exp

[
−(nkL)2

2

{
(mη0C0σδ)

2 + 4εx ,yHx ,y sin2(mπνx ,y )
}]

→ this formula has been shown experimentally to accurately predict the dependence of
microbunching formation on a number of parameters.
→ Paper: A. Kruschinski, X. Deng et al., “Confirming the theoretical foudation of steady-state
microbunching”, Communications Physics 7, 160 (2024)
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Modeling the microbunching process Comparison with experiment

Dependence on modulation amplitude

bn,m ≡ bm(nkL) = Jn(nmkLη0C0A) · exp

[
−(nkL)2

2

{
(mη0C0σδ)

2 + 4εx ,yHx ,y sin2(mπνx ,y )
}]

Modulation amplitude proportional to laser electric
field: A ∝ EL ∝

√
PL ∝

√
EL

(Total laser pulse energy proportional to
instantaneous power for constant pulse shape)
Coherent radiation power Pcoh ∝ |b|2

⇒ Pcoh = a1
∣∣J1
(
a2
√
EL
)∣∣2
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Modeling the microbunching process Comparison with experiment

Dependence on transverse-longitudinal coupling

bn,m ≡ bm(nkL) = Jn(nmkLη0C0A) · exp

[
−(nkL)2

2

{
(mη0C0σδ)

2 + 4εx ,yHx ,y sin2(mπνx ,y )
}]

Transverse-longitudinal coupling (TLC) can disrupt
microbunching formation
Impact proportional to transverse emittance
Example on the right for the vertical plane; MLS
tune: νy = 2.23
Impact of TLC is reduced if m · νy is close to an
integer 100 125 150 175 200 225

vertical beam size σy / µm
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Modeling the microbunching process Comparison with experiment

Verifying the analytical formula in experiment

bn,m ≡ bm(nkL) = Jn(nmkLη0C0A) · exp

[
−(nkL)2

2

{
(mη0C0σδ)

2 + 4εx ,yHx ,y sin2(mπνx ,y )
}]

→ this formula has been shown experimentally to accurately predict the dependence of
microbunching formation on a number of parameters.
→ Paper: A. Kruschinski, X. Deng et al., “Confirming the theoretical foudation of steady-state
microbunching”, Communications Physics 7, 160 (2024)

⇒ But: it assumes momentum-independent phase slippage η = η0 = const., and cannot
describe impact of nonlinear phase slippage η(δ).
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Microbunching with nonlinear phase slippage

A simple model for the microbunching process

One-turn maps for momentum deviation δ = ∆p
p0

and longitudinal particle postion z :

δm+1 = δm + Am sin (kLzm) ,

zm+1 = zm − C0 η δm+1.

→ Instead of analytical formula, use simulation with nonlinear phase slippage

η(δ) = η0 + η1 δ + η2 δ
2 + . . .

and calculate bunching factor from the final distribution using DFT.
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Microbunching with nonlinear phase slippage Simulation results

Simulation results: Microbunching with nonlinear dynamic phase slippage

Simulation set up with a uniform particle distribution around δ = 0.

Results: bunching factor at
first laser harmonic, one turn

after modulation vs. first three
orders of dynamic phase

slippage:

⇒ Optimal bunching factor at ηsyn,1 = 0 and suitable value of ηsyn,0 ≈ 2 · 10−5, depending on
modulation amplitude. Value of ηsyn,2 is uncritical as long as it is not too large.
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Microbunching with nonlinear phase slippage Simulation results

Simulation results: Microbunching with nonlinear dynamic phase slippage

Simulation set up with a uniform particle distribution around δ = 0.

Results: bunching factor at
first laser harmonic, one turn

after modulation vs. first three
orders of dynamic phase

slippage:

⇒ Optimal bunching factor at ηsyn,1 = 0 and suitable value of ηsyn,0 ≈ 2 · 10−5, depending on
modulation amplitude. Value of ηsyn,2 is uncritical as long as it is not too large.

⇒ What is “dynamic phase slippage” ηsyn?
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Microbunching with nonlinear phase slippage Static and dynamic phase slippage

How to define momentum-dependent phase slippage

∆T

T0
= η(δ) δ, with δ =

∆p

p0
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Microbunching with nonlinear phase slippage Static and dynamic phase slippage

How to define momentum-dependent phase slippage

∆T

T0
= η(δ) δ, with δ =

∆p

p0

→ what is p0?

Arnold Kruschinski Necessary conditions for SSMB in storage rings 18 September 2024 14 / 20



Microbunching with nonlinear phase slippage Static and dynamic phase slippage

How to define momentum-dependent phase slippage

∆T

T0
= η(δ) δ, with δ =

∆p

p0

→ what is p0?

⇒ Momentum of reference particle with orbit
through centers of all magnets. But this orbit is
only stationary if the rf frequency matches!
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Microbunching with nonlinear phase slippage Static and dynamic phase slippage

How to define momentum-dependent phase slippage

∆T

T0
= η(δ) δ, with δ =

∆p

p0

→ what is p0?

⇒ Momentum of reference particle with orbit
through centers of all magnets. But this orbit is
only stationary if the rf frequency matches!

A step back: look at absolute function T (p):
T

p

TFP

T0

pFPp0

T(p)

frf,0

frf synchrotron
oscillations

gradient∝η syn,0

∆frf

⇒ To deal with changes of fixed point momentum, define a dynamic phase slippage relative to
the fixed point momentum pFP.
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Microbunching with nonlinear phase slippage Static and dynamic phase slippage

Defining static and dynamic phase slippage

Static reference momentum p0 from static
reference rf frequency frf,0:

T0 = T (p0) =
h

frf,0
.

⇒ Static phase slippage η:

T − T0

T0
= η · p − p0

p0
.

Reference momentum pFP from rf frequency frf
(which may be varied):

TFP = T (pFP) =
h

frf
.

⇒ Dynamic phase slippage ηsyn:

T − TFP

TFP
= ηsyn ·

p − pFP

pFP
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Microbunching with nonlinear phase slippage Static and dynamic phase slippage

Defining static and dynamic phase slippage

Static reference momentum p0 from static
reference rf frequency frf,0:

T0 = T (p0) =
h

frf,0
.

⇒ Static phase slippage η:

T − T0

T0
= η · p − p0

p0
.

Reference momentum pFP from rf frequency frf
(which may be varied):

TFP = T (pFP) =
h

frf
.

⇒ Dynamic phase slippage ηsyn:

T − TFP

TFP
= ηsyn ·

p − pFP

pFP

⇒ Calculate fixed point momentum shift δFP from static phase slippage and rf frequency:

η · δFP ≡ η ·
pFP − p0

p0
=

TFP − T0

T0
=

f −1
rf − f −1

rf,0

f −1
rf,0

≈ −
frf − frf,0

frf,0
.
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Microbunching with nonlinear phase slippage Static and dynamic phase slippage

Defining static and dynamic phase slippage

Static reference momentum p0 from static
reference rf frequency frf,0:

T0 = T (p0) =
h

frf,0
.

⇒ Static phase slippage η:

T − T0

T0
= η · p − p0

p0
.

Reference momentum pFP from rf frequency frf
(which may be varied):

TFP = T (pFP) =
h

frf
.

⇒ Dynamic phase slippage ηsyn:

T − TFP

TFP
= ηsyn ·

p − pFP

pFP

⇒ Dynamic phase slippage can be calculated from static phase slippage for any value of δFP:

ηsyn(δsyn, δFP) =
1

1 + η(δFP) δFP

∞∑
i=1

1
i !

(1 + δFP)i
[
di

dδi
η(δ) δ

]
δ=δFP

δi−1
syn
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Microbunching with nonlinear phase slippage Static and dynamic phase slippage

Transforming the simulation results to static phase slippage

Directly accessible in the experiment is not the dynamic phase slippage, but only the static
phase slippage (which can be manipulated with multipole magnets) and the fixed point
momentum (via changes to the rf frequency).

Transform the local but general
simulation results from
dynamic to static phase

slippage:

→ For the plot on the right, η1 = 0 and η2 = 10 are assumed. Different values of η2 would
change the curvature of the parabolic shapes.
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Microbunching with nonlinear phase slippage Static and dynamic phase slippage

Transforming the simulation results to static phase slippage

For different values of η1, the area of maximum bunching factor (depicted is |b| > 0.5) does
not change shape but only moves along a parabola in the η0-δFP plane:
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⇒ Changes of η1 away from the optimum can be compensated by adjusting η0 and δFP!
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Microbunching with nonlinear phase slippage Comparison with experiment

Experimental confirmation

In the experiment at the MLS, sextupoles are used to manipulate η1. η0 (via quadrupoles) and
δFP (via rf frequency) are adjusted to recover microbunching: This is possible over a wide range

of η1, and the necessary changes also quantitatively align with the simulation results:
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(the horizontal displacement of experimental points can be explained by a systematic offset.)
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Conclusion

Conclusion

Concept of static and dynamic phase slippage is useful not only for SSMB, also for any
other applications of extreme low-alpha

Microbunching process shows complex dynamics with a nonlinear phase slippage function
Results obtained from simulation have been validated in experiment
Insights into the general behavior of the SSMB PoP experiment were gained, important for
preparation of next phase

Important for any future SSMB storage ring:
Accurate control over higher orders of phase slippage (sextupoles, octupoles)
Stable conditions (minimize fluctuation of η0, η1, best with permanent magnets)

Arnold Kruschinski Necessary conditions for SSMB in storage rings 18 September 2024 19 / 20



References

Thank you for you attention!

Ratner, D. F. and A. W. Chao. “Steady-State Microbunching in a Storage Ring for
Generating Coherent Radiation”. In: Phys. Rev. Lett. 105, 154801 (2010). DOI:
10.1103/PhysRevLett.105.154801.
Li, Z. et al. “Generalized longitudinal strong focusing in a steady-state microbunching
storage ring”. In: Phys. Rev. Accel. Beams 26, 110701 (2023). DOI:
10.1103/PhysRevAccelBeams.26.110701.
Deng, X. Theoretical and Experimental Studies on Steady-State Microbunching. Springer
Theses. Singapore: Springer, 2024. DOI: 10.1007/978-981-99-5800-9.
Deng, X. et al. “Experimental demonstration of the mechanism of steady-state
microbunching”. In: Nature 590 (2021), pp. 576–579. DOI:
10.1038/s41586-021-03203-0.
Kruschinski, A. et al. “Confirming the theoretical foundation of steady-state
microbunching”. In: Commun. Phys. 7, 160 (2024). DOI: 10.1038/s42005-024-01657-y.

Arnold Kruschinski Necessary conditions for SSMB in storage rings 18 September 2024 20 / 20

https://doi.org/10.1103/PhysRevLett.105.154801
https://doi.org/10.1103/PhysRevAccelBeams.26.110701
https://doi.org/10.1007/978-981-99-5800-9
https://doi.org/10.1038/s41586-021-03203-0
https://doi.org/10.1038/s42005-024-01657-y

	Introduction
	What is SSMB?
	The SSMB PoP experiment at the MLS

	Modeling the microbunching process
	Analytical formula for the bunching factor
	Comparison with experiment

	Microbunching with nonlinear phase slippage
	Simulation results
	Static and dynamic phase slippage
	Comparison with experiment

	Conclusion
	References
	References

