Acceptance studies

Yousen Zhang
BNL
19 June 2024

Motivation

- $R_{e / \mu}=\frac{N_{\pi e}\left(E>E_{\text {th }}\right) \cdot\left(1+C_{\text {tail }}\right)}{N_{\pi \mu e}} \cdot R_{\text {time }}^{\epsilon} \cdot R_{\text {energy }}^{\epsilon} \cdot R_{\text {angle }}^{\epsilon} \cdot R_{\text {topology }}$
- $\boldsymbol{N}_{\boldsymbol{\pi} \boldsymbol{e}}\left(\boldsymbol{E}>\boldsymbol{E}_{\boldsymbol{t h}}\right)$ and $\boldsymbol{N}_{\boldsymbol{\pi} \boldsymbol{\mu} \boldsymbol{e}}$ are obtained through fitting the timing spectrum
- $\boldsymbol{C}_{\text {tail }}$ comes from a dedicated tail fraction measurement

From PiENu

Motivation

- $R_{e / \mu}=\frac{N_{\pi e}\left(E>E_{t h}\right) \cdot\left(1+C_{\text {tail }}\right)}{N_{\pi \mu e}} \cdot R_{\text {time }}^{\epsilon} \cdot R_{\text {energy }}^{\epsilon} \cdot R_{\text {angle }}^{\epsilon} \cdot R_{\text {topology }}$
- $R_{\text {time }}^{\epsilon} \cdot R_{\text {energy }}^{\epsilon} \cdot R_{\text {angle }}^{\epsilon} \cdot R_{\text {topology }}$ are acceptance ratios of signal events ~ 1+/- O(10-4)
- Defines fiducial phase space using $\left(x_{\pi}, y_{\pi}, z_{\pi}\right)$ and $\left(\cos \theta_{e}, \phi_{e}\right)$ (DocDB-210-v2)
- Beam momentum spread
- Difference in detector response

Acceptance definition

- Pion stop position $\left(x_{\pi}, y_{\pi}, z_{\pi}\right)$ - Last layer of pion hits (by timing coincidence)
- Positron solid angle $\left(\cos \theta_{e}, \phi_{e}\right)$
- Defined by standalone ATAR
- First five hits of positron track

Focus on this talk

- Low travel distance

- small chance of e-Si scattering
- Smaller energy deposition ($R_{\text {energy }}^{\epsilon}$)
- Require high granularity and spatial resolution
- Defined by ATAR \& Tracker/CALO (PiENu)
- Loose requirement on production point of e^{+}?
- Suffers larger chance of Bhabha
- Photons from annihilation
- Missing, partially detected, detected by tracker/CALO

Selections on timing

- In principle, signals
- $N_{\pi e}$ defined by $\pi(D A R) \rightarrow e$
- $N_{\pi \mu e}$ defined by $\pi(D A R) \rightarrow$ $\mu(D A R) \rightarrow e$
- Sizable timing between pion, muon, positron

- $\tau_{\pi} 26.033 \mathrm{~ns}$
- $\tau_{\mu} 2197.03 \mathrm{~ns}$
- Sizable travel distance for $\mu D A R$
- Very likely to detect μ DAR?
- Define signals using timing

Selections on timing

- $R_{\text {time }}^{\epsilon}$ is defined by prompt $\left(\mathrm{t}_{\pi}\right)$ and delayed $\left(t^{\prime}=t_{\mu}-t_{\pi}, t=t_{e}-t_{\pi}\right)$ signals
- Select $\pi(D A R) \rightarrow e$
- by $\left\{t_{e}>t_{\pi} ; t>\Delta t\right\}$
- subject to $\int d t e^{-\frac{t}{\tau_{\pi}}} / \tau_{\pi}$
- Select $\pi(D A R) \rightarrow \mu(D A R) \rightarrow e$
- by $\left\{t_{e}>t_{\mu}>t_{\pi} ; t^{\prime}>\Delta t_{\pi}, t-t^{\prime}>\Delta t_{\mu}\right\}$
- subject to

$$
\int d t \int_{\Delta t_{\pi}}^{t-\Delta t_{\mu}} d t^{\prime} e^{-\frac{t-t^{\prime}}{\tau_{\mu}}} / \tau_{\mu} e^{-\frac{t^{\prime}}{\tau_{\pi}}} / \tau_{\pi}
$$

- $\Delta t, \Delta t_{\pi}, \Delta t_{\mu}$ rely on timing resolution and pion lifetime
- Single channel, $\sigma_{t} \sim 1 \mathrm{~ns} / 20 \mathrm{~ns}$ (LGAD/PiN)
- Inter-channel, $\sigma_{t} \sim 50 \mathrm{ps} / 1 \mathrm{~ns}$ (LGAD/PiN)
- $\tau_{\pi} \sim 26 \mathrm{~ns}$

Timing pulses at different positions

Timing pulses at different positions
A quick look at $\Delta t=\Delta t_{\pi}=\Delta t_{\mu}=5 \mathrm{~ns}$

- Assume precision of pion lifetime is $\mathrm{O}\left(10^{-4}\right)$.
- Relative difference in acceptance caused by extrapolation is of order $\mathrm{O}\left(10^{-6}\right)$

Selections on energy

- A MIP in silicon deposit $\sim 3.87 \mathrm{MeV} / \mathrm{cm}$
- 5 hits ~ 1000 um $<0.5 \mathrm{MeV} \rightarrow$ difference of $O\left(10^{-6}\right)$
- Chance for Bhabha scattering within 1000 um ${ }_{\text {(Docob 172-v3, } \mathrm{X} \text {. (ian) }}$
- $69.3 \mathrm{MeV}: 4.4 \times 10^{-5}$
- Michel spectrum: 2.4×10^{-4}
- Annihilation
- $11.0 \pm 2.5 \mathrm{mb}$ per electron in a beryllium absorber for 50 MeV incident positron (doi.org/10.1103/PhysRev.89.790)
- Assume 14 free electrons in silicon

positron energy $=4 \mathrm{MeV}$.	xsec per electron $=8.11478 \mathrm{e}-26 \mathrm{~cm}^{\wedge} 2$.
positron energy $=10 \mathrm{MeV}$.	xsec per electron $=3.98278 \mathrm{e}-26 \mathrm{~cm}^{\wedge} 2$.
positron energy $=20 \mathrm{MeV}$.	xsec per electron $=2.32235 \mathrm{e}-26 \mathrm{~cm} 2$.
positron energy $=30 \mathrm{MeV}$.	xsec per electron $=1.68965 \mathrm{e}-26 \mathrm{~cm} 2$.
positron energy $=50 \mathrm{MeV}$.	xsec per electron $=1.12685 \mathrm{e}-26 \mathrm{~cm} 2$.
positron energy $=65 \mathrm{MeV}$.	xsec per electron $=9.13133 \mathrm{e}-27 \mathrm{~cm} 2$.
positron energy $=70 \mathrm{MeV}$.	xsec per electron $=8.60218 \mathrm{e}-27 \mathrm{~cm}^{\wedge} 2$.

Selection on topology

- ATAR geometry

- 1-vs. 2-side strips
- Pixel $\leftarrow(x, y, z)$
- 1-side readout: 2 layers for 1 pixel
- 2-side readout: 1 layer for 1 pixel
- Hit \leftarrow pixel + timing + energy deposition, (x, y, z, t, dE)
- Clustered hits \leftarrow hits
- Track \leftarrow clustered hits
- $\mathrm{dE} / \mathrm{dx} \leftarrow$ track + energy deposition

Reconstruction and selections in simulation

- Reconstruction of hits
- Pixel is determined by geometry and true energy deposition $1 / 3 * 120 \mathrm{um} * 3.875 \mathrm{MeV} / \mathrm{cm}=\underline{0.0155}$ MeV
- Merge two hits at the same pixel if $\left|t_{1}-t_{2}\right|<1 n s$
- Hit clustering in timing and space
- Cluster pixels by timing if $\left|t_{1}-t_{2}\right|<1 n s$ (alternative way to study σ_{t} for inter-channels $\left.\rightarrow 1 \mathrm{~ns}\right)$
- Collections of hits $\left\{t_{\pi}^{i} ; t_{\pi}^{i}<t_{\pi}^{i+1}\right\},\left\{t_{\mu}^{i} ; t_{\mu}^{i}<t_{\mu}^{i+1}\right\}$,

$$
\left\{t_{e}^{i} ; t_{e}^{i}<t_{e}^{i+1}\right\}
$$

- Identify the timing of each particle by $t_{\pi}^{0}, t_{\mu}^{0}, t_{e}^{0}$
- Cluster pixels by position by requiring adjacent pixels within $<\sqrt{200^{2}}+200^{2}+120^{2} \times 3$ um
- Event selection
- $\left|t_{\pi}-t_{\mu}\right|>5 n s$ and $\left|t_{\mu}-t_{e}\right|>5 n s$ for $\pi \mu e$

- $\left|t_{\pi}-t_{e}\right|>5 n s$ for $\pi e v$

Pion decay vertex for $\pi \rightarrow \mu \rightarrow e$

- Select last layer in z
- Pion beam is approximately perpendicular to ATAR and travels forward (positive-z)
- Not cover Q. Buat's studies for precise determination of pion vertex, (DocDB-242)

On requiring 5 hits

- Edges of $\pi \rightarrow \mu \rightarrow e$ span $\sim 2 \mathrm{~mm}$
- Choose 2 mm as binning size
- Consistency within 0.2%, sample size $\mathrm{O}(400 \mathrm{k})$
pienu Eff. = 5 e+ hits / all

pimue Eff. = 5 e+ hits / all

-8.0 mm to -6.0 mm

The algorithm for positron direction

- Known pion decay point $\left(x_{\pi}, y_{\pi}, z_{\pi}\right)$
- Find nearest 5 hits to $\left(x_{\pi}, y_{\pi}, z_{\pi}\right)$
- Fit a preliminary direction \hat{n}
- Rank positron hits by $\vec{d}(\pi, e) \cdot \hat{n}$
- Find the extremes in ranked hits $\left\{e_{\text {start }}, e_{\text {end }}\right\}$

- Find the nearest point $\left(x_{e}, y_{e}, z_{e}\right)$ to $\left(x_{\pi}, y_{\pi}, z_{\pi}\right)$
- Find nearest 5 hits to (x_{e}, y_{e}, z_{e})
- Fit the direction $\widehat{n_{e}}$
- Flip the direction if necessary
- Positive sign for $\vec{d}\left(e_{\text {start }}, e_{\text {end }}\right) \cdot \widehat{n_{e}}$
- Validate $\left(x_{e}, y_{e}, z_{e}\right)$

Validation of positron starting point

- Pion decay in the center $\rightarrow|x|<8 \mathrm{~mm} \& \&|y|<8 \mathrm{~mm}$
- Studied $\pi \rightarrow e$ (sample size $\mathrm{O}(300 \mathrm{k})$)

Require pion in the center

Study the positron outgoing direction

- Select events with
- pion decay in the center of ATAR, $|x|<8 \mathrm{~mm},|y|<8 \mathrm{~mm}$
- 5 hits of positrons are found
- True momenta of positrons
- Plot normalized to number of events
- Uniform distribution implies 1/(5*5) ~ 0.04

Study the positron outgoing direction

- Project to 1D and show uncertainty - uniform distribution in truth

Study the positron outgoing direction

- Reduce $(\cos \theta, \varphi)$ to $(\cos \theta)$ - difference at $O(0.5 \%)$ for true positron momenta

Uncertainty $=\sqrt{N_{i}} / \sum N_{i}$

$$
\text { Uncertainty }=\frac{\sqrt{N_{1}} N_{2}}{\left(N_{1}+N_{2}\right)^{2}} \oplus \frac{\sqrt{N_{2}} N_{1}}{\left(N_{1}+N_{2}\right)^{2}}
$$

Study the positron outgoing direction

- Project to 1D and

 show uncertainty reco- Non-uniform distribution in both decay channels
- Expected as direction from discrete pixels
- Similar behavior

Study the positron outgoing direction

- Reduce $(\cos \theta, \varphi)$ to $(\cos \theta)$-- difference at $\mathrm{O}(0.5 \%)$ for reconstructed positron direction

Uncertainty $=\sqrt{N_{i}} / \sum N_{i}$

$$
\text { Uncertainty }=\frac{\sqrt{N_{1}} N_{2}}{\left(N_{1}+N_{2}\right)^{2}} \oplus \frac{\sqrt{N_{2}} N_{1}}{\left(N_{1}+N_{2}\right)^{2}}
$$

Summary and discussions

- Consistent acceptance between $\pi e v$ and $\pi \mu e$ given uncertainty at O (0.5\%)
- Timing and topology cuts imposed
- Uniformity of angle distribution breaks in RECO but still give a relatively equal behavior between $\pi e v$ and $\pi \mu e$
- Future efforts
- Improving the uncertainty estimate to $\mathrm{O}(0.01 \%)$
- Larger size of samples
- Incorporating selections from other studies
- Changing detector geometry and setup
- timing/resolution resolution
-
- Integrating studies to central software
- ...

Backup

Studies of in-out definition

- Pure pion beam at 1200 mm upstream
- Pion beam momentum $55+/-1.1 \mathrm{MeV}$
- Gaussian-shaped with waist sigma $\sim 10 \mathrm{~mm}$
- Truth level
- Pion DAR (K.E. < 1 keV , to be tuned)
- RECO level
- ATAR-only Geometry
- Double-sided shared readout with little gap (=4um)
- Thickness = 120 um
- Strip pitch size $=200$ um
- Reconstruction
- Hits are combinations of two strips and layer, abstracted by pixel location + timing
- Pixel is determined by geometry and true energy deposition $1 / 3$ * 120 um * $3.875 \mathrm{MeV} / \mathrm{cm}=$
0.0155 MeV
- Mean ionization energy for pure silicon $\mathrm{I}_{0}=3.62 \mathrm{eV}, 4 \mathrm{k}$ electrons for 0.0155 MeV
- Merge two hits at the same pixel if $\left|t_{1}-t_{2}\right|<1 n s$ (to be tuned)
- Cluster pixels by timing if $\left|t_{1}-t_{2}\right|<1$ ns
- Cluster pixels by position by requiring adjacent pixels within two units, sqrt(0.2*0.2*2 + 0.12*0.12)*3 um
- Selections (event-level)
- $\left|t_{\pi}-t_{e}\right|>5 n s$ (to be tuned)
- $\left|t_{\pi}-t_{\mu}\right|>5 n s$ and $\left|t_{\mu}-t_{e}\right|>5 n s$
- Subject to the exponential distribution as discussed previously

Strategy

- Divide G4Step into smaller pieces
- Each piece is assigned to a pixel in grid defined by double-sided strips
- Each piece is a "rec hit"
- Rec hit position is defined as the center of pixel
- Rec hits in the same cell merged together as long as $\Delta t<1 \mathrm{~ns}$

Separation between μ and $\mu \rightarrow \mathrm{e}$ - continued

- A quick look at ($\mathrm{t}_{\mu}-$ $\left.\mathrm{t}_{\mathrm{H} \rightarrow \mathrm{e}}\right)>5 \mathrm{~ns}$
- Assume precision of pion lifetime is $\mathrm{O}\left(10^{-4}\right)$.
- Relative difference in acceptance caused by extrapolation is of order $\mathrm{O}\left(10^{-6}\right)$

$\ln [1]:=\mathbf{t 1}=2197.03$

Out[1]= 2197.03

$$
\begin{aligned}
\ln [2]:= & \partial_{\mathrm{t} 2}\left(\left(\int_{0}^{700} e^{-\mathrm{x} / \mathrm{t} 2} / \mathrm{t} 2 \mathrm{~d} \mathrm{x}\right) /\left(\int_{0}^{700} \int_{\mathrm{x}+5}^{700} e^{-(\mathrm{y}-\mathrm{x}) / \mathrm{t} 1} / \mathrm{t} 1 \mathrm{e}^{-\mathrm{x} / \mathrm{t} 2} / \mathrm{t} 2 \mathrm{dlydx}\right)\right) \\
\mathrm{Out}[2]== & -\frac{700 \mathrm{e}^{-700 / \mathrm{t} 2}}{\mathrm{t} 2^{2}\left(0.997727+\frac{1597.59}{-2197.03+1 . \mathrm{t} 2}+e^{-700 . / \mathrm{t} 2}\left(-0.997727-\frac{2197.03}{-2197.03+1 . \mathrm{t} 2}\right)\right)}- \\
& \left.\frac{\left(1-\mathrm{e}^{-700 / \mathrm{t} 2}\right)\left(-\frac{1597.59}{\langle-2197.03+1 . \mathrm{t} 2)^{2}}+\frac{2197.03 \mathrm{e}^{-700 . / \mathrm{t} 2}}{\langle-2197.03+1 . \mathrm{t} 2)^{2}}+\frac{700 . e^{-700 . / \mathrm{t} 2}\left(-0.997727-\frac{2197.03}{-2197.03+1 . \mathrm{t} 2}\right)}{\mathrm{t} 2^{2}}\right)}{\left(0.997727+\frac{1597.59}{-2197.03+1 . \mathrm{t} 2}+e^{-700 . / \mathrm{t} 2}\left(-0.997727-\frac{2197.03}{-2197.03+1 . \mathrm{t} 2}\right)\right)^{2}}\right)
\end{aligned}
$$

$$
\ln [3]:=t 2=26.033
$$

Out[3]= 26.033
$\ln [4]:=\mathrm{N}[\% 2] * \mathrm{t} 2 \boldsymbol{*} \mathbf{0 . 0 0 0 1}$
Out[4] $=0.0000128696$
$\ln [5]:=N\left[\left(\int_{0}^{700} e^{-x / t 2} / t 2 d x\right) /\left(\int_{0}^{700} \int_{x+5}^{700} e^{-(y-x) / t 1} / t 1 e^{-x / t 2} / t 2 d y d x\right)\right]$
Out[5]= 3.81899
$\ln [7]:=\% 4 / \% 5$
Out $[7]=3.36991 \times 10^{-6}$

Bias from binned chi2 fit

- Observe differences between unbinned maximum likelihood fit and binned chi2 fit

A RooPlot of "time [ns]"

Histogram of binned_histogram__t

Compare with expectation

- Left: Red curve: function: $\mathrm{N} e^{-\frac{t}{\tau_{\pi}}} / \tau_{\pi}$, parameters are plugged in, no fit
- Right: Red curve: $\mathrm{N}\left(e^{-\frac{t}{\tau_{\pi}}}+\int_{5}^{t-5} d t^{\prime} e^{-\frac{t-t^{\prime}}{\tau_{\mu}}} e^{-\frac{t^{\prime}}{\tau_{\pi}}} /\left(\tau_{\mu} \tau_{\pi}\right)\right)$, parameters are plugged in, no fit

Pion decay vertex for $\pi \rightarrow e$

- Select last layer in z
- Pion beam is approximately perpendicular to ATAR and travels forward (positive-z)
- Not cover Q. Buat's studies for precise determination of pion vertex, (DocDB-242)

Pion decay vertex by largest dE

- $\mathrm{dE} / \mathrm{dx}$ is increasing as momentum falls. Pion stops at Bragg Peak
- $\mathrm{dE} / \mathrm{dx}$ * dx for small dx may not be largest at decay vertex

Pion decay position distribution

- A requirements of 5-hits for positrons introduce an energy threshold for positrons

Counts by requiring 5 hits for $\pi \rightarrow \mu \rightarrow e$

Event display of hit and track

- Fitting positron direction using first 5 hits

- An illustration of $\pi \rightarrow \mu \rightarrow e$ events.
- Red line shows fitted direction and extrapolates to very far side.
- Put a (tunable) energy threshold on "hits"
- Energy depositions of merged ATAR responses must exceed threshold
- A tentative cuts is $1 / 3$ * 120 um * 3.875 $\mathrm{MeV} / \mathrm{cm}=0.0155 \mathrm{MeV}$

$\pi \rightarrow \mu \rightarrow e$ event Same event as the left
- $\quad X$ and Z are in mm
- Color represents dE

-2.0 mm to 0.0 mm

Validation of the fitting algorithm

- Require pion decay in the center, $|\mathrm{x}|<8 \mathrm{~mm}$ \& \& $|\mathrm{y}|<8 \mathrm{~mm}$
- Studied $\pi \rightarrow e$ (sample size $\mathrm{O}(3 \mathrm{k})$)
- Better determination of the positron outgoing direction

Residuals of e^{+}direction in solid angles

- Pick events with delta phi \sim pi to check if their theta ~ 0 or pi

Impact from polar angle

- Require pion decay in the center, $|x|<8 \mathrm{~mm} \& \&|y|<8 \mathrm{~mm}$
- Studied $\pi \rightarrow e$
- Require at least one pixel to be 200 um (one-strip) away in x-or y-direction from the pixel where positron starts
- Separate samples according to polar angle is necessary
- Reduce $\left(\cos \theta_{e}, \phi_{e}\right)$ to $\left(\cos \theta_{e}\right)$ maybe useful for straightly forward/backward positrons

Study the positron outgoing direction

- Select events with
- pion decay in the center of ATAR, $|x|<8 \mathrm{~mm},|y|<8 \mathrm{~mm}$
- 5 hits of positrons are required
- RECO information employed
- Plot normalized to number of events
- Uniform distribution implies 1/(5*5) ~ 0.04

Study the positron outgoing direction

- Ratio between $\pi e v$ and $\pi \mu e$ - no difference found in truth

Uncertainty $=\sqrt{N_{i}} / \sum N_{i}$

Study the positron outgoing direction

- Ratio between $\pi e v$ and $\pi \mu e$ - no bias found in RECO

Uncertainty $=\sqrt{N_{i}} / \sum N_{i}$

Estimates uncertainties

- Binominal proportion confidence interval
- I choose the larger error among two upper and lower error bars
- Considering Poisson + multinomial uncertainties
- Independent between bins
- Normalized counts $=N_{1} /\left(N_{1}+N_{2}\right)$
- $\delta={ }^{\delta N_{1}} /\left(N_{1}+N_{2}\right)$
- $\delta={ }^{N_{2} \delta N_{1}} /\left(N_{1}+N_{2}\right)^{2}$
- $\delta={ }^{N_{2} \delta N_{1}} /{ }_{\left(N_{1}+N_{2}\right)^{2}} \oplus^{N_{1} \delta N_{2}} /\left(N_{1}+N_{2}\right)^{2}$

Probability from 0.036 to 0.044

- Close to binomial interval by a few percents

Probability from 0.18 to 0.22

- 10% deviation for the first two estimates

Err(N_1/N, N_2/N)/Binomial

Resolve ambiguity of strips

- Idea from wire-cell at LArTPC

$$
\left(\begin{array}{l}
u 1 \\
u 2 \\
v 1 \\
v 2 \\
v 3
\end{array}\right)=\left(\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{l}
H 1 \\
H 2 \\
H 3 \\
H 4 \\
H 5 \\
H 6
\end{array}\right)
$$

