

# $R_{e/\mu}$ analysis strategy

#### **Quentin Buat (University of Washington)**

**PIONEER Collaboration Meeting – June 19, 2024** 

### Introduction

- In previous talks:
  - Specific (critical!) aspects were tackled individually
  - Patrick presented an overview of the simulation
- This talk:
  - From output histograms of the simulation framework to  $\Delta R_{e/\mu}/R_{e/\mu}$
- Results shown in this talk come from the latest simulated samples
  - Every sample considered was simulated with 10<sup>8</sup> pions (PIONEER Phase 1 goal is to record 2e8  $\pi^+ \rightarrow e^+ v$ )

### **The Simulated Geometry**

- 25  $X_0$  LXe
- Opening: 35°
- 2x2 mm Ti-6AI-4V alloy windows
- ATAR Cables (Al)
- Mock-up Tracker
- ATAR + DTAR
- Missing:
  - DTAR Cables
  - ATAR + DTAR Supports



### **Further Simulation Assumptions**

- Pure, cylindrical  $\pi$  beam 5 cm upstream of ATAR with 1 cm radius
- Run the full reconstruction
- Recover ATAR and DTAR energies with a 10% resolution
- Energy Dependent Calo resolution





#### What our data could look like Our latest best guess



#### Expressing $R_{e/\mu}$

$$R_{e/\mu} = \frac{N_{\pi-e}(E > E_{th})}{N_{\pi-\mu-e}} \times (1 + c_{tail}) \times R^{\epsilon}$$

$$\frac{\delta R^{\epsilon}}{R^{\epsilon}} = 10^{-4}$$
 Do we control the  $\pi$ -e/ $\pi$ - $\mu$ -e event selection efficiency ratio at the 10<sup>-4</sup> level?

$$c_{tail} \approx 1\%, \frac{\delta c}{c} \approx 1\%$$

Can we reveal the tail while maintaining a sufficient signal efficiency?

 $\frac{\delta N}{N} = 10^{-4}$  High Energy bin: can we extract  $N_{\pi-e}$  with a time fit at the desired precision?

 $\frac{\delta N}{N} = 10^{-4}$  Low Energy bin: can we extract  $N_{\pi-\mu-e}$  with a time fit at the desired precision?

### Acceptance

 $\delta R^{\epsilon}$ 

Re



### Acceptance



Good agreement with the expectations, within 10<sup>-3</sup> precision level Some theta dependencies? Need more stat to decisively conclude.

### Acceptance

$$R_{e/\mu} = \frac{N_{\pi-e}(E > E_{th})}{N_{\pi-\mu-e}} \times (1 + c_{tail}) \times \mathbb{R}^{\epsilon}$$

$$R_{time}^{\epsilon} \times R_{energy}^{\epsilon} \times R_{angle}^{\epsilon} \times R_{topology}^{\epsilon}$$

Evaluated from simulations



Numbers from a simulations of 10<sup>8</sup> pions 'sent to' PIONEER

| Quantity                              | Value         | Uncert      |
|---------------------------------------|---------------|-------------|
| N(pienu events) (scaled down by R_pi) | 5879.2354     | 0.85126     |
| N(pimue events)                       | 11146781.7563 | 16742.96147 |
| R(e/mu) ('Perfect' PIONEER) (X 1e4)   | 1.2386        | 0.00796     |
| R(e/mu) (SM) (X 1e4)                  | 1.2352        | 0.00015     |
| R(e/mu) ('Perfect' PIONEER) / R(e/mu) | (SM) 1.0027   | 0.00644     |

True  $R_{e/\mu}$  obtained from the simulation samples is consistent with the SM expectations within 0.1%

Very promising but need samples at least 10 times larger to monitor the acceptance at the desired precision

### **Tail Fraction**

$$R_{e/\mu} = \frac{N_{\pi-e}(E > E_{th})}{N_{\pi-\mu-e}} \times (1 + c_{tail}) \times R^{\epsilon}$$



### **Tail Fraction**

$$R_{e/\mu} = \frac{N_{\pi-e}(E > E_{th})}{N_{\pi-\mu-e}} \times (1 + c_{tail}) \times R^{e}$$

Series of cut implemented in the event reconstruction to suppress the different backgrounds

Goal δс  $c_{tail} \approx 1 \%$  ,  $\approx 1\%$ 

Cuts are placed on quantities that can be defined at detector level

BUT for now we rely on pattern and tracklet formations which are still (almost completely) truth-based





### **Tail Fraction Analysis** Energy spectrum



#### **Tail Fraction Analysis** Signal Efficiency and background rejection



While maintaining a signal efficiency of 56% We suppress all the backgrounds at the targeted level



Cuts need to be tuned to maintain a flat signal efficiency

### **Tail Fraction Analysis**

$$R_{e/\mu} = \frac{N_{\pi-e}(E > E_{th})}{N_{\pi-\mu-e}} \times (1 + c_{tail}) \times R^{e}$$



Very good agreement at low theta, deviation observed at higher values

### **Tail Fraction Analysis**

$$R_{e/\mu} = \frac{N_{\pi-e}(E > E_{th})}{N_{\pi-\mu-e}} \times (1 + c_{tail}) \times R^{e}$$



Numbers from a simulations of 10<sup>8</sup> pions 'sent to' PIONEER

| Energy threshold = 57.5 MeV<br>Tail Fraction Calculation | Value (%) | MC stat uncertainty |
|----------------------------------------------------------|-----------|---------------------|
| True Value                                               | 0.70425   | 0.00122             |
| Tail Fraction Analysis Region                            | 0.68880   | 0.00161             |
| Analysis Region / True Value                             | 0.978074  | 0.28406             |

Tail Fraction measured from the Tail Fraction analysis is off by **about 2%** from expectations

Cut optimisation is most likely the culprit

$$R_{e/\mu} = \frac{N_{\pi-e}(E > E_{th})}{N_{\pi-\mu-e}} \times (1 + c_{tail}) \times R^{\epsilon}$$



Can we extract  $N_{\pi-e}(E > E_{th})$ ?

### A side note on fitting An LHC perspective

- A lot of LHC analysis are done by extracting the parameter of interest with a **template fit** 
  - **Histograms** of the expectations are fitted to the **binned data**



- These tools are also very powerful to study sensitivity
  - We can encode our (assumed) knowledge using (gaussian) constraints of some parameters (for example normalisation of bkg components)
- Some slides with more details on the tool in the elog
  - <u>https://maxwell.npl.washington.edu/elog/pienuxe/Simulation+and+software/25</u>
  - Maybe a topic for an upcoming general meeting?

#### High Energy Bin Fit Setup



#### Phys. Rev. Lett. 115, 071601 (2015)





$$R_{e/\mu} = \frac{N_{\pi-e}(E > E_{th})}{N_{\pi-\mu-e}} \times (1 + c_{tail}) \times R^{\epsilon}$$

Fit Result

| Floating Parameter  | FinalValue +/-  | - Error  |
|---------------------|-----------------|----------|
| alpha_beam_muons_HE | -5.2387e-05 +/- | 9.93e-01 |
| alpha_mudif_HE      | 2.1547e-03 +/-  | 9.92e-01 |
| alpha_pileup_HE     | 3.1258e-05 +/-  | 3.24e-01 |
| pidar_mudar_HE      | 1.0000e+00 +/-  | 3.81e-03 |
| pie_HE              | 1.0000e+00 +/-  | 1.05e-04 |



Can we extract 
$$N_{\pi-e}(E > E_{th})$$
?

$$R_{e/\mu} = \frac{N_{\pi-e}(E > E_{th})}{N_{\pi-\mu-e}} \times (1 + c_{tail}) \times R^{\epsilon}$$

What else did we learn?





$$R_{e/\mu} = \frac{N_{\pi-e}(E > E_{th})}{N_{\pi-\mu-e}} \times (1 + c_{tail}) \times R^{e}$$

What else did we learn?





High Energy bin (positive) time spectrum has constraining power on the pileup contribution

Muon Decay-in-Flight uncertainty has a large impact on  $N_{\pi-e}(E > E_{th})$ 

$$R_{e/\mu} = \frac{N_{\pi-e}(E > E_{th})}{N_{\pi-\mu-e}} \times (1 + c_{tail}) \times R^{e}$$





$$R_{e/\mu} = \frac{N_{\pi-e}(E > E_{th})}{N_{\pi-\mu-e}} \times (1 + c_{tail}) \times R^{\epsilon}$$

| Name            | Туре       | Range                    | Desc.                                 |  |
|-----------------|------------|--------------------------|---------------------------------------|--|
| pidar_mudar_LE  | NormFactor | Floating (starting at 1) | Floating norm of pi[dar]-mu[dar]      |  |
| pidif_LE        | NormFactor | Floating (starting at 1) | Floating normalisation of pi(dif) bkg |  |
| beam_muon_LE    | NormFactor | Floating (starting at 1) | Floating norm for beam muon           |  |
| alpha_mudif_LE  | OverallSys | 1±0.001                  | Constrained uncert on mudif in HE     |  |
| alpha_pileup_HE | OverallSys | 1±0.001                  | Constrained uncert on pileup          |  |
| pienu           | Fixed      |                          |                                       |  |

Fit is a lot more complex in the Low Energy bin with more components with similar (positive) time spectra

$$R_{e/\mu} = \frac{N_{\pi-e}(E > E_{th})}{N_{\pi-\mu-e}} \times (1 + c_{tail}) \times R^{\epsilon}$$



Can we extract 
$$N_{\pi-\mu-e}$$
?

Goal

 $= 10^{-4}$ 

 $\frac{\delta N}{N}$ 

$$R_{e/\mu} = \frac{N_{\pi-e}(E > E_{th})}{N_{\pi-\mu-e}} \times (1 + c_{tail}) \times R^{\epsilon}$$





Potential dangerous source of bias!

### Fitting it all together

$$R_{e/\mu} = \frac{N_{\pi-e}(E > E_{th})}{N_{\pi-\mu-e}} \times (1 + C_{tail}) \times R^{e}$$

Fit model for the Tail Fraction Region

| Name                  | Туре       | Range                    | Desc.                                                     |
|-----------------------|------------|--------------------------|-----------------------------------------------------------|
| pie_tf_HE             | NormFactor | Floating (starting at 1) | Floating norm of pienu in the high energy bin             |
| pie_tf_LE             | NormFactor | Floating (starting at 1) | Floating norm of pienu<br>in the low energy bin           |
| alpha_mudif_tf_uncert | OverallSys | 1±0.5                    | 50% uncertainty on mudif<br>in the tail fraction analysis |
| alpha_pidif_tf_uncert | OverallSys | 1±0.5                    | 50% uncertainty on pidif in the tai<br>fraction analysis  |

Full Analysis Likelihood Function: High Energy Bin X Low Energy Bin X Tail Fraction Region

### Fitting it all together

$$R_{e/\mu} = \frac{N_{\pi-e}(E > E_{th})}{N_{\pi-\mu-e}} \times (1 + c_{tail}) \times R^{e}$$

| Source                | $R_{e/\mu}$ x 1e4 | $Delta(R_{e/\mu}) \times 1e4$ | $Delta(R_{e/\mu}) / R_{e/\mu}$ (%) |
|-----------------------|-------------------|-------------------------------|------------------------------------|
| PIONEER               | 1.23519           | 0.000150613                   | 0.0121935                          |
| PIONEER (w/o $c_{ta}$ | ail) 1.22655      | 0.000125561                   | 0.0101653                          |
| PIENU                 | 1.2327            | 0.0023                        | 0.186582                           |
| sm                    | 1.23524           | 0.00015                       | 0.0121434                          |
|                       | Quantity x 1e2    | Uncertainty x 1e2             | 2 Relative Uncertainty (%)         |
| <b>C</b> tail         | 0.68899           | 0.00652504                    | 0.947043                           |





# **Conclusion** $R_{e/\mu} = \frac{N_{\pi-e}(E > E_{th})}{N_{\pi-\mu-e}} \times (1+c_{tail}) \times R^{\epsilon}$

- Simulation samples can be used to conduct a full LFU analysis
  - Sample size are still a limiting factor for accurate background estimate in the Tail Fraction Analysis and acceptance correction studies at the 10<sup>-4</sup> precision level
- Using templated fits, we can estimate PIONEER sensitivity from simulated samples
  - Many studies can be conducted to understand our measurement
- Event reconstruction still relies heavily on truth information and (very) naive detector response
  - A lot of work ahead of us, priorities need to be defined

# Additional material

#### **Tail Fraction Analysis** Unscaled yields

| ================ | =======  | ======================================= | :==               |
|------------------|----------|-----------------------------------------|-------------------|
| Yield reports    | in the : | LE bin of the TFA (unscaled             | 1)                |
| Sample           | Yields   | Uncert. (Rel. uncert. in %              | ) Composition (%) |
| · · ·            |          |                                         |                   |
| pienu            | 20.07    | 0.05 (0.25)%                            | 89.37             |
| michel           | 1.00     | 1.00 (100.00)%                          | 4.45              |
| pileup           | 0.00     | <3.00 (95% CL)                          | 0.00              |
| mudif            | 1.35     | 0.01 (0.41)%                            | 6.01              |
| pidif            | 0.04     | 0.01 (31.62)%                           | 0.17              |
| beam_muons       | 0.00     | <3.00 (95% CL)                          | 0.00              |

\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_

Yield reports in the HE bin of the TFA (unscaled)

| Sample     | Yields  | Uncert. (Rel. uncert. in %) | Composition (%) |
|------------|---------|-----------------------------|-----------------|
| pienu      | 2893.71 | 0.60 (0.02)%                | 99.96           |
| michel     | 0.00    | <3.00 (95% CL)              | 0.00            |
| pileup     | 1.00    | 1.00 (100.00)%              | 0.03            |
| mudif      | 0.04    | 0.00 (2.40)%                | 0.00            |
| pidif      | 0.00    | <3.00 (95% CL)              | 0.00            |
| beam muons | 0.00    | <3.00 (95% CL)              | 0.00            |

$$R_{e/\mu} = \frac{N_{\pi-e}(E > E_{th})}{N_{\pi-\mu-e}} \times (1 + c_{tail}) \times R^{e}$$

What else did we learn?





High Energy bin (positive) time spectrum has constraining power on the pileup contribution