Particle Beams

An introduction to accelerator
physics and the PSI beamlines
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Why do we need particle accelerators?

Natural particle sources:

e Cosmic rays
e Natural radiation
(alpha/beta/gamma)

- Hard to gain control:
e.g.change energy or
intensity, select particle
species

Accelerators are needed to
produce precise initial states
with variable energies and
high intensities:

Radioactive sources:

e Limited energies
(up to a few MeV)
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Why do we need particle accelerators?

View into smaller '
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We need high energies
to study small things _ hec
like elementary particles A= T

' Particle accelerators
Visible X-ray A<0.01 nm

A =400 =>» 700 nm A=0.01=> 10 nm




Basics of particle accelerators

How do we accelerate
particles?

e charged particles
travelling through
an electro-
magnetic field feel
the Lorentz force

F=q(#xB+E)

F=gvxB

1

Magnetic field B:

Force acts perpendicular to path

Can

change direction of path

Cannot accelerate
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Electric field E:

Force acts parallel to path
e Can accelerate
e not optimal for deflection

cathode anode

—

electron beam

high voltage
0 o—
-+

Numerical example:

v=c, B=1T,

E = vB = 3x10% m/sxT = 300 MV/m
Technical limit: ~ 1 MV/m




How to steer and focus a beam

Dipole magnets: Quadrupole magnets:
direction of
e Bendthe beaminone e Focusthe beam in one plane force
plane, free drift in the but defocus in the other
other >  Usually quadruple
* B(Z) =B, el N doublets or triplets are x
Fr=qvBy s . 5 used
Fy— mu? q):_djnfﬁ/ e Sextupole/ octupole magnets
are used in precision

e Beamrigidity:
_—p/a=p B

beamlines

e Field gradient g:
F(z,y) = q-v- B(z,y)
B, =9y
B,=g-zx

e Quadrupole strength k:
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Iron dominated: Superconducting: Z + k T = 0 ~— H armonic Iron dominated: Superconducting:
field determined by field determined by . k _ 0 . field determined by field determined by
geometry of poles geometry of coils Yy— Ky = OSCi | | ator oy o:.ilc”pl:es gf;’;{ Zi :;:s

— 2 flat poles = j(§) ~ cosg




Basics of particle beams

What is a beam: Basic beam example:

Bundle of particles e [sotropic disc-source with a collimator
Every particle follows its
own trajectory x'
described by the
equations of motion
e Can be statistically
described by position , .

and momentum ‘ ™ ‘
distribution in w ﬁ W w
2-d phase space | |

e Independent
description of x,y &z

'w/d

phase space / /d-
representation W
phase space

representation

Wiedemann, H. (2019). Particle accelerator physics. Springer International Publishing.

e Paraxial approximation: x’ ~ sin(x’) = dz/dz




Basics of partic

Gaussian beam (“ideal”):

e Position and
momentum follow
Gaussian distribution

e Particle distribution in
phase space can be
described by an ellipse

Liouville’s theorem:

e Particle density in phase
space stays constant if
only conservative forces
act on beam

- Area of ellipse stays
constant

Beam emittance:

e=A/n




Basics of partic

e beams

Gaussian beam (“ideal”):

e Position and
momentum follow
Gaussian distribution

e Particle distribution in
phase space can be
described by an ellipse

Liouville’s theorem:

e Particle density in phase
space stays constant if
only conservative forces
act on beam

- Area of ellipse stays
constant

Beam emittance:

A= Te

In the focus:




Beam parameters and matrix formalism

Have a look at Twiss parameters:

° Parameters that describe the

beam ellipse:

o a:correlation between x & x'
o fB:beam width in x
o y:beam widthin x'

-oVely

o/

tan2¢ =/20L/(’Y—[3)

TP

area:A = me

Yy

Beam matrix formalism:

Beam phase-space, free beam transport and magnets can

be described by matrices:
o = (011 012) 26( B —a)
021 022 -y
e Free beam transport:

1 L
Mf:(O 1)

e Dipole magnet:

[ cos(L/p)
Ma = <_1/,m-n(L/p)

psin(L/ p))
cos(L/p)

dipole

quadrupole

M=M; My My My- M;

_ T
0 End = Mo starM

e Focusing/ defocusing quadrupole magnet:

( cos(vVkL)
My =

—Vksin(VEL)
e Then: ¢ = MogMT

%sin(\/ﬁL)
cos(VEL)

)M _ ( cosh(VkL) ﬁsinh(\/ﬁL)
VEsinh(VEL)  cosh(vVEL)

)
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Cockroft-Walton
1928

Cocept: ”llur;[égg‘(:redit: K. Wille

rectifier circuit, built of
capacitors and diodes
(Greinacker circuit)
Limitation:

Electrical discharge in air

(Paschen Law)

Max. Voltage ~ 1 MV

1930

Van de Graaff
accelerator

Concept:
mechanical transport of
charges via rotating belt

Electrode in high pressure gas
to suppress discharge (SF)

Max. Voltage ~ 1- 10 MV

1936 Tandem Van de Graaff

at MPI Heidelberg

+

Image Credit: K. Wille

Concept:

Generate negative ions,
strip off electrons in the
center, use voltage a 2nd
time with now positive ions

10



Linear accelerators

Working principle:

High-frequency (RF) field
Particle should only feel the
field when the field direction
is synchronized
-  Drift-tubes screen the
field while the field has
the reversed polarity
The more energy the particle
gains, the faster it becomes
-  Drifts tubes have to
increase in length
Only particles in phase with
the RF are accelerated
-  Particles will be
clustered in packages
(bunches)

Acceleration gaps (electrical field)

Drift-tubes (field free)

Energy gain after n gaps:

E = n q Vmaxsin ¢

= I+

v\ \
9008
l I/l

li=pi-

N

n No. of acceleration gaps
q Charge of the particle
Vmax Peak voltage of RF System
¢ synchronous phase w.rt. RF field

&

Only these particles
are accelerated

AV

These are lost

Linear accelerators:

e Still widely used for
medium energy
experiments or as
injectors

But:
Particles pass accelerator only
once




Circular orbit: Cyclotrons

Classical Cyclotron:

connection between
velocity, field strength

and radius:
’02
m-—- = quB
e Revolution period does
not depend on the
velocity (isochronous)
v _¢B
T - m
e Output particle energy
classically limited by the

magnetic field strength

and radius:
1 ¢ B’R?
E=—-mv =
9 MY om

e Classical (non-relativistic)

Acceleration gap

————

Particle

Modified cyclotrons:

Compensate for relativistic effects!

Synchro-cyclotron:

e With acceleration, RF field
frequency (sometimes also B-field)
are increased

- runin pulsed mode

NN D-shaped source
magnets
: fre = const.
Exiting beam B = const.
Limitation:

Dephasing via relativistic
effects! Classical cyclotron
only works for particles up
to few % of speed of light.
Not very useful for
electrons (already
relativistic at ~500 keV)

Synchro-cyclotron Isochronous cyclotron
fo (E) fre = const.
B (E) or B = const. B(r)

Isochronous cyclotron:

e B-field increases with radius
-  Orbits are more complicated
but can produce a
continuous beam




Synchrotrons

Working principle:

e Place dipole bending magnets between elements of a
short linac to make it a “circle”

e Actively synchronize accelerator parameters (magnetic
fields, RF) continuously to keep accelerating particles
in phase

-  Allows multiple turns in the same device for a
limited amount of bunches

= Challenging control: correction signals have to
travel faster than the particles!

acceleration gap

dipole
(bending)

quadrupole
(focusing)

injektion kicker extraktion kicker

transferelinie

7

injector/ physics experiment
pre-accelerator

Destination:

* next accelerator

* target/physics
experiment

* beam dump

beam pipe
(under high vacuum)

Most famous synchrotron: LHC

e 27 km circumference, 100km
underground

e Accelerates protons and
heavy-ionsto E =6.5Z TeV (2018),
13 TeV center of mass

e Collides 2 counter-rotating beams
in 4 physics experiments

CMS

North Area i

HiRadMat
B

ISOLDE
[ 1502 ]

BOOSTER

1972 (157 m)
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The High Intensity Proton Accelerator at PSI

Cockroft-Walton:

e Accelerates protons from a
hydrogen source to 870 keV

Injector II:

e [sochronous cyclotron
Accelerates protons to 72 MeV
T T +——H Py | |/

o T
(]
L 8111 e

Pictures: https://www.psi.ch/
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Paul Scherrer Institute (PSI)

PSI facility:

e Located in Villigen,
Switzerland

e Large scale research facility
o 35 % material science
o 25 % life sciences
o 19 % general energy
o 13 % nuclear energy
o 8% particle physics

PSI:

e Free electron laser SwissFEL]
e Proton accelerator HIPA —]
o Secondary Beamlines
o  Muon source SuS
o Neutron source SINQ
e Proton Therapy (COMET) //
e Swiss light source SLS — |




Ring Cyclotron:

Started operating 1974
Isochronous cyclotron
8 magnets

4 cavities at 850 kV
with RF 50.6 MHz

e Produces 590 MeV
proton beam, 1.3 MW




The High Intensity Proton Accelerator at PSI

Carbon targets M and E: Carbon target E g[ i

e Target M (mince):5mm

Target E (epaisse): 40/ 60 mm

e Rotating carbon disk for heat
dissipation

e Pions are produced via interaction of
protons with target (A-resonance)

p+p-o>p+n+at  p+n-op+n+a°

prites)

A

p+p-o>p+p+r° pH+n-op+p+a
p+p-o>d+a=at p+n-o>n+n+axt

p+n—->d+ 0.
e Muons (and positrons) are produced
from pion decay
e Surface muons:
28 MeV/c muons
from pion decays e
near target surface




The High Intensity Proton Accelerator at PSI

PiM1 beamline:

e Optimized for a narrow
momentum bite

PiM1-target

Property Value

Total path length 23.12m

Momentum range 100 — 500MeV/c

Solid angle 6 msr

Momentum acceptance (FWHM) +1.5%

Momentum resolution 0.1%

Dispersion at the IFP 7 cm/%

Spot size on target (FWHM) 15 mm horizontal by 10 mm vertical

Angular divergence on target (FWHM)

35 mrad horizontal by 75 mrad vertical
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The High Intensity Proton Accelerator at PSI

PiE5 beamline:

04

e Optimized for high
pion (and muon)
rates

Signal Amplitude

Tlame‘:vn I:F
Key parameters (measured 2022):

e Pionrate @65 MeV: R_=633 kHz
(~300 kHz in target area)
e Momentum bite
Ap/p < 2%
e Particle contamination
32% muons, 25% positrons
e Spot size in beam focus
o= 23 mm, o =10 mm
e Beam emittance
£y~ 617/232 mm mrad
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