

π

Particle Beams

An introduction to accelerator physics and the PSI beamlines

PIONEER Collaboration meeting

Stefan Hochrein Seattle, 19.06.2024

Why do we need particle accelerators?

Natural particle sources:

- Cosmic rays
- Natural radiation (alpha/beta/gamma)
- → Hard to gain control: e.g. change energy or intensity, select particle species

Accelerators are needed to produce precise initial states with variable energies and high intensities:

Why do we need particle accelerators?

Basics of particle accelerators

How do we accelerate particles?

• charged particles travelling through an electromagnetic field feel the Lorentz force

$$\vec{F} = q(\vec{v} \times \vec{B} + \vec{E})$$

Magnetic field B:

Force acts perpendicular to path

- Can change direction of path
- Cannot accelerate

Electric field E:

Force acts parallel to path

- Can accelerate
- not optimal for deflection

How to steer and focus a beam

Dipole magnets:

- Bend the beam in one plane, free drift in the other
- $\begin{array}{ccc} \bullet & B(\vec{x}) = B_y & \Phi = + \Phi_0 & N \\ F_L = q \cdot v \cdot B_y & & B_z & P_{\text{poles}} \\ F_Z = \frac{\gamma m v^2}{\rho} & \Phi = \Phi_0 & S \end{array}$
- Beam rigidity: $\rightarrow p/q = \rho \cdot B$

Quadrupole magnets:

- Focus the beam in one plane but defocus in the other
 - → Usually quadruple doublets or triplets are used
- Sextupole/ octupole magnets are used in precision beamlines
- Field gradient g: $F(x,y) = q \cdot v \cdot B(x,y)$ $B_x = g \cdot y$ $B_y = g \cdot x$
- Quadrupole strength k: $\ddot{x} + kx = 0$ • Harmonic $\ddot{y} - ky = 0$ oscillator

field determined by

geometry of poles

→ 4 hyperbolic poles

Superconducting field determined by geometry of coils $\rightarrow j(\phi) \sim \cos 2\phi$

Basics of particle beams

What is a beam:

- Bundle of particles
- Every particle follows its own trajectory described by the equations of motion
- Can be statistically described by position and momentum distribution in 2-d phase space
- Independent description of x, y & z

Basic beam example:

• Isotropic disc-source with a collimator

Basics of particle beams

Gaussian beam ("ideal"):

- Position and momentum follow Gaussian distribution
- Particle distribution in phase space can be described by an ellipse

Liouville's theorem:

- Particle density in phase space stays constant if only conservative forces act on beam
- → Area of ellipse stays constant

Beam emittance:

 $\epsilon = A/\pi$

Basics of particle beams

Gaussian beam ("ideal"):

- Position and momentum follow Gaussian distribution
- Particle distribution in phase space can be described by an ellipse

Liouville's theorem:

- Particle density in phase space stays constant if only conservative forces act on beam
- → Area of ellipse stays constant

Beam emittance:

 $A = \pi \epsilon$

quadrupole

Beam parameters and matrix formalism

Have a look at Twiss parameters:

- Parameters that describe the beam ellipse:
 - \circ α : correlation between x & x'
 - β : beam width in x
 - \circ γ : beam width in x'

Beam matrix formalism:

Beam phase-space, free beam transport and magnets can be described by matrices:

dipole

$$\boldsymbol{\sigma} = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{pmatrix} = \epsilon \begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix}$$

• Free beam transport:

$$\mathcal{M}_f = egin{pmatrix} 1 & L \ 0 & 1 \end{pmatrix}$$

Dipole magnet:

$$\mathcal{M}_d = \begin{pmatrix} cos(L/
ho) &
ho sin(L/
ho) \\ -1/
ho sin(L/
ho) & cos(L/
ho) \end{pmatrix} \begin{pmatrix} \mathcal{M} = \mathcal{M}_f \cdot \mathcal{M}_q \cdot \mathcal{M}_f \cdot \mathcal{M}_d \cdot \mathcal{M}_f \\ \sigma_{End} = \mathcal{M} \sigma_{Start} \mathcal{M}^T \end{pmatrix}$$

• Focusing/defocusing quadrupole magnet: $\mathcal{M}_{q} = \begin{pmatrix} \cos(\sqrt{k}L) & \frac{1}{\sqrt{k}}\sin(\sqrt{k}L) \\ -\sqrt{k}\sin(\sqrt{k}L) & \cos(\sqrt{k}L) \end{pmatrix} \mathcal{M}_{q} = \begin{pmatrix} \cosh(\sqrt{k}L) & \frac{1}{\sqrt{k}}\sinh(\sqrt{k}L) \\ \sqrt{k}\sinh(\sqrt{k}L) & \cosh(\sqrt{k}L) \end{pmatrix}$

• Then:
$$\sigma = \mathcal{M} \sigma_0 \mathcal{M}^T$$

Electrostatic accelerators

1930

Van de Graaff accelerator

Concept:

mechanical transport of charges via rotating belt

Electrode in high pressure gas to suppress discharge (SF₆)

Max. Voltage ~ 1- 10 MV

1936 Tandem Van de Graaff

at MPI Heidelberg

Concept:

Generate negative ions, strip off electrons in the center, use voltage a 2nd time with now positive ions

Linear accelerators

Working principle:

- High-frequency (RF) field
- Particle should only feel the field when the field direction is synchronized
 - → Drift-tubes screen the field while the field has the reversed polarity
- The more energy the particle gains, the faster it becomes
 - → Drifts tubes have to increase in length
- Only particles in phase with the RF are accelerated
 - → Particles will be clustered in packages (bunches)

Circular orbit: Cyclotrons

Classical Cyclotron:

• Classical (non-relativistic) connection between velocity, field strength and radius:

$$m\frac{v^2}{r} = qvB$$

• Revolution period does not depend on the velocity (isochronous)

$$\omega = \frac{v}{r} = \frac{qB}{m}$$

 Output particle energy classically limited by the magnetic field strength and radius:

 $E=rac{1}{2}mv^2=rac{q^2B^2R^2}{2m}$

Limitation:

Dephasing via relativistic effects! Classical cyclotron only works for particles up to few % of speed of light. Not very useful for electrons (already relativistic at ~500 keV)

Modified cyclotrons:

Compensate for relativistic effects!

Synchro-cyclotron:

- With acceleration, RF field frequency (sometimes also B-field) are increased
 - → run in pulsed mode

Isochronous cyclotron:

- B-field increases with radius
 - → Orbits are more complicated but can produce a continuous beam

Synchrotrons

Working principle:

- Place dipole bending magnets between elements of a short linac to make it a "circle"
- Actively synchronize accelerator parameters (magnetic fields, RF) continuously to keep accelerating particles in phase
 - → Allows multiple turns in the same device for a limited amount of bunches
 - → Challenging control: correction signals have to travel faster than the particles!

Most famous synchrotron: LHC

- 27 km circumference, 100km underground
- Accelerates protons and heavy-ions to E = 6.5 Z TeV (2018), 13 TeV center of mass
- Collides 2 counter-rotating beams in 4 physics experiments

The High Intensity Proton Accelerator at PSI

Cockroft-Walton:

• Accelerates protons from a hydrogen source to 870 keV

Injector II:

- Isochronous cyclotron
- Accelerates protons to 72 MeV

Paul Scherrer Institute (PSI)

PSI facility:

- Located in Villigen, Switzerland
- Large scale research facility
 - 35 % material science
 - 25 % life sciences
 - 19 % general energy
 - 13 % nuclear energy
 - 8 % particle physics

PSI:

- Free electron laser SwissFEL
- Proton accelerator HIPA
 - Secondary Beamlines
 - Muon source $S\mu S$
 - Neutron source SINQ
- Proton Therapy (COMET) -
- Swiss light source SLS -

The High Intensity Proton Accelerator at PSI

Ring Cyclotron:

- Started operating 1974
- Isochronous cyclotron
- 8 magnets
- 4 cavities at 850 kV with RF 50.6 MHz
- Produces 590 MeV proton beam, 1.3 MW

The High Intensity Proton Accelerator at PSI

Carbon targets M and E:

- **Target M** (mince): 5 mm
- Target E (epaisse): 40/ 60 mm
- Rotating carbon disk for heat dissipation
- Pions are produced via interaction of protons with target (Δ-resonance)

$$\begin{array}{ll} p+p \rightarrow p+n+\pi^+ & p+n \rightarrow p+n+\pi^0 \\ p+p \rightarrow p+p+\pi^0 & p+n \rightarrow p+p+\pi^- \\ p+p \rightarrow d+\pi^+ & p+n \rightarrow n+n+\pi^+ \\ \end{array}$$

 $p+n \rightarrow d+\pi^0$.

- Muons (and positrons) are produced from pion decay
 Surface muons:
- Surface muons: 28 MeV/c muons from pion decays near target surface

The High Intensity Proton Accelerator at PSI

The High Intensity Proton Accelerator at PSI

