DAQ and triggering electronics for PIONEER

Lawrence Gibbons

THE AND MADE AND

Electronics "backbone" for DAQ / triggering (reminder)

- The system should
 - handle a large number of inputs to the triggering
 - 300 1000 calo channels
 - 1000's of bits from ATAR hit topology
 - . . .
 - be flexible
 - have low latency for trigger decisions - O(few 100 ns)

- CU/CMS APOLLO Command Module a good • match
 - 104 Samtec Firefly serial I/O lines
 - 64 bits @ ~250 MHz / channel
 - optical option \rightarrow DAQ / detector isolation
 - lots of logic / processing power —
 - HL-LHC lifetime (support related)

Command Module (CM) Status

Pre-production board

PIONEER's 2 XCVU13P-2 FPGAs awaiting production run

- Small production order expected this summer
 - 1 CM for PIONEER
- Developer (P. Wittich) now shares my lab!
 - 1-FPGA pre-production
 board available for
 development

Proposed protocols

- Communication to PCs: PCIe
 - configuration: IPBus over PCIe
 - excellent experience with original IPBus over ethernet in g-2
- Pipelined trigger information → trigger CM: AXI4 over Firefly
 - industry standard FPGA ↔ FPGA communication
- Real time command / control / monitoring: ??
 - a group to evaluate needs & implement would be welcome!

PCIe over Firefly card in hand

12-Channel calo digitizers

- ADC: dual-channel 12-bit 1 GSPS AD9234
 - low latency (~60 ns)
 - reasonable price (for a 1 GSPS ADC)
- 3 XCKU025 FPGAs
 - each handles 2 ADC chips
 - dedicated DDR4 buffer
 - 1 Firefly output channel
- 4th Firefly channel for configuration / realtime commands
- Data packaging in 64 bit Firefly words— flexible:

	16 bit trigger info	12 bit ADC 1 readout	12 bit ADC 2 readout	12 bit ADC 3 readout	12 bit ADC 4 readout	4
•						@ 250 MHz
	40 bit trigger info			12 bit ADC 1,2 readout	12 bit ADC 3,4 readout	

Instrumenting a ~1000 channel calorimeter

A reminder: could imagine similar for ATAR

Goal: Deadtime-free design

- Option 1: DDR4 as direct circular buffer
 - ADC data streamed directly to DDR4 memory
 - Assuming 4 consecutive "bursts" of 8 512-bit words for reading / writing:
 - 50% rate efficiency \Rightarrow 150 MHz burst rate
 - Streaming \rightarrow DDR4 uses 125 MHz burst rate
 - Leaves 25 MHz for reading
 - 10 kHz trigger rate w/ 256 ADC samples / channel / trigger needs 0.32 MHz burst rate
 - 32 GB DDR4 $\rightarrow \sim 0.5$ s buffering
 - no constraint on trigger decision speed
 - problematic for downstream writing bottlenecks
- Option 2: Intermediate FPGA Circ. Buffer
 - Eg., g-2 WFD5 has a 65K buffer \rightarrow 65 μ s buffer
 - should be fine for triggering (we want O(100s ns))
 - Only Triggered events \rightarrow DDR4
 - hours of buffering for even small DDR4

- ADC and FPGA data flow:
 - 1. The ADCs will run at 1000 MSPS.
 - 2. Two ADCs are in a chip.
 - 3. Two ADC chips will connect to two independent JESD204C blocks in each FPGA.
 - 4. Each ADC hip will transfer data from its two ADCs over 4 serial lines running at 10 Gbps using 8b/10b encoding.
 - 5. The JESD204C blocks will run at 250 MHz (10 Gbps line rate divided by 40).
 - The JESD204C blocks will produce 128-bit words at 250 MHz. Each word contains 8 samples (4 per ADC).
 - 7. A 256-bit word will be formed at 250 MHz by joining the outputs of the two JESD204C blocks.
 - For memory storage, a 512-bit word will be formed at 125 MHz by joining 2 consecutive 250 MHz words. The 64 bytes in this word contain 8 2-byte samples from each of 4 ADCs.
 - For triggering, 4 consecutive samples from each ADC will be summed, producing a 16-bit word at 250 MHz. The 4 words from the 4 ADCs will be joined to produce a 64-bit word at 250 MHz. This will be sent downstream.
- <u>FPGA and DDR4 memory maximal data flow</u>
 - 1. A -2 speed grade FPGA can handle a memory speed up to 2400 MHz (1200 Mhz clock).
 - 2. The memory data bus word width is 64 bits
 - 3. The memory module socket is a 260-pin SODIMM.
 - 4. Data is written or read in "bursts". A burst is 8 consecutive 64-bit words, or 512 bits.
 - 5. The interface between the FPGA logic and the memory controller is 512 bits wide (8 words). This matches the words produced in step #8 above.
 - 6. The interface to 2133 MHz memory can accept or produce bursts at 300 MHz.
 - Alternating writes and reads of at least 4 consecutive bursts can achieve a memory utilization efficiency of 50%. This is a maximum burst rate of 150 MHz. Writing needs 125 MHz, leaving 25 MHz for reading.
 - 8. If each readout is 256 samples, or 32 bursts, a 10 kHz event rate requires a 0.32 MHz burst rate.
 - Efficiency can be improved by reading or writing more consecutive bursts. It can get up to 90% if 64 consecutive bursts are in each write or read operation

Cornell University

Clock distribution & alignment

- One g-2 WFD5 irritation: clock jitter → time misalignments between ADCs at several different clock periods
- Build time-alignment into PIONEER system
 - standardized ADC protocol (JESD204B) provides tool
 - periodic SYSREF signal tightly timed to rising edge of ADC clock (2 GHz clock for 1 GHz sampling)
 - O(100 ps) tolerance
 - special purpose clock synth chips allow creation / control / realignment of SYSREF + CLOCK
 - PIONEER: TI LMX2820
 - LMK00301 low-jitter clock buffer for fanout (1:10)

Form factor & Mezzanines

- Main board: 6U×220mm Eurocard format, 1.2" spacing
 - 14 boards in (probably) a Vector Electronics CCA68-84-01 chassis
 - power distribution via a 3U backplane
- Analog Front End (AFE), power supply → individual mezzanines
 - the power supply failed most often for g-2 WFD5s
 - replace cheap mezzanine than instead of expensive full board
- Need guidance / specs for AFE
 - differential input? (better noise immunity)
 - single-ended input? (convenience)
 - looking for options that could support both form factors

standard SMA OK, Twinax SMA challenging

Status / Near-term plans

- Design of 4-channel (1 FPGA) well along
 - 1st pass of physics data flow complete: schematics and routing
 - routing for clocks, power, utilities remains
 - Full design always in mind to ensure everything fits
 - simplifies addition of remaining channels

- Next steps
 - Firmware for Command Module
 - IPBus
 - PCIe over firefly
 - Timing / latency measurements
 - Resume 4-channel prototype of digitizer (WFDP?) when funding available

