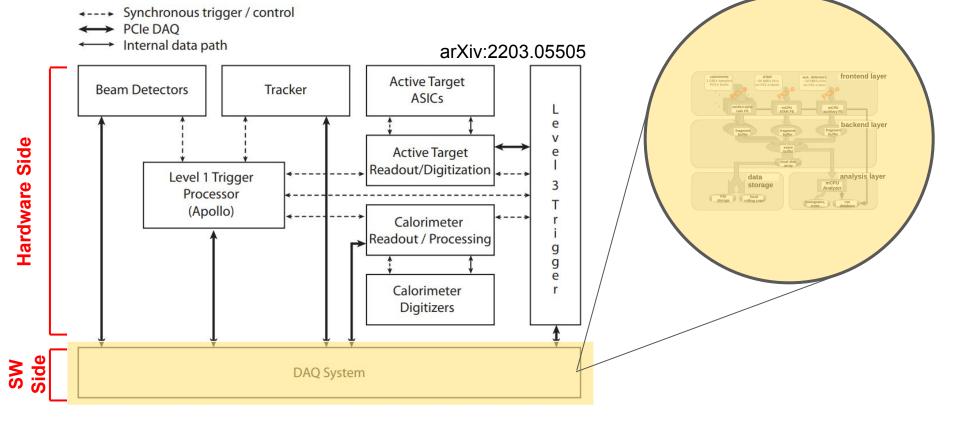
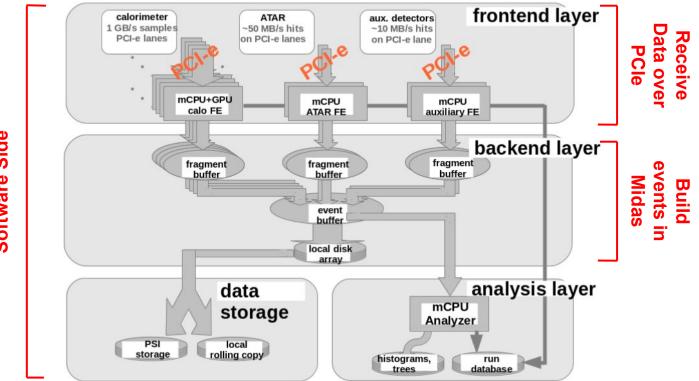

PIONEER DAQ

Jack Carlton University of Kentucky June 19th, 2024


Hardware vs. Software Side

- Usually "DAQ" refers to the "software side" (i.e. MIDAS and related tools)
 - Loosely used for hardware (electronics) side as well

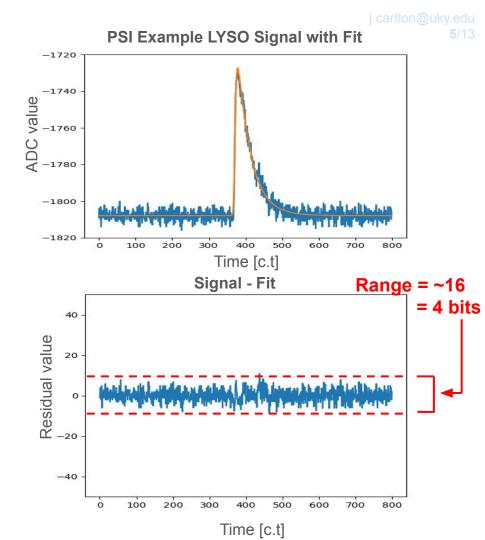

• I like to differentiate between the software and hardware sides

Proposed Data Acquisition (DAQ) Framework

arXiv:2203.05505

Software Side

arXiv:2203.01981

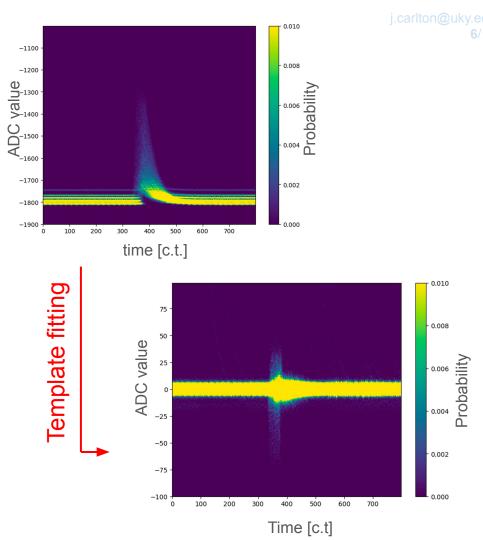

Data Rates

triggers	prescale	range	rate	CALO			ATAR digitizer			ATAR high thres	
		TR(ns)	(kHz)	$\Delta T(ns)$	chan	MB/s	$\Delta T(ns)$	chan	MB/s	chan	MB/s
PI	1000	-300,700	0.3	200	1000	120	30	66	2.4	20	0.012
CaloH	1	-300,700	0.1	200	1000	40	30	66	0.8	20	0.004
TRACK	50	-300,700	3.4	200	1000	1360	30	66	27	20	0.014
PROMPT	1	2,32	5	200	1000	2000	30	66	40	20	0.2

- PIONEER DAQ expects data rate of ~3.5GB/s
- This is ~100,000 TB/year
- How do we compress this in real time?
 - Fit data, store fit parameters
 - Compress and store residuals, throw some out
 - Graphics Processing Units (GPUs) used for this operation

Template Fitting

- Can construct a continuous template for our traces T(t)
- Can fit traces using template: $f(t) = A \cdot T(t - t_0) + B$
- Storing unfit traces takes ~12 bits per ADC sample
- Storing residuals takes ~4 bits per ADC sample
- By fitting, we can compress the data by a factor of ~3



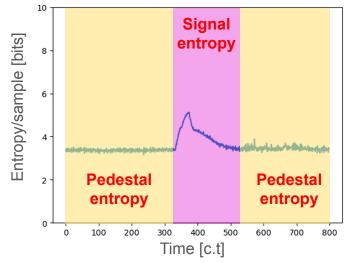
Template Fitting

• Data from PSI test beam

• Each vertical slice corresponds to pdf $p_i(x_i)$

• Template fit drastically reduces spread of data

Theoretical Best Compression


- For lossless compression, the best possible compression rate is the entropy rate
- Entropy rate of pedestal part of signal is **3.4 bits per ADC sample**
 - A perfect fit would reduce signal to pedestal noise
- Best possible data storage rate 3.5 GB/s → ~1 GB/s
 - Assumes similar noise to PSI test beam data
- Realistically the data storage rate depends how good our fit is
 - Assuming entropy rate of ~5 bits/sample 3.5 GB/s \rightarrow ~1.5 GB/s

Entropy Rate Formula

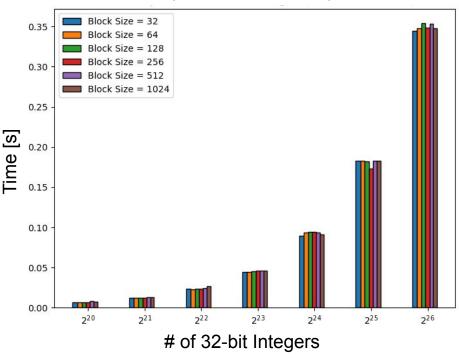
$$H(X_i) = \sum_{\text{traces}} p(X_i) \log_2 \left(p(X_i) \right)$$

 $X_i \equiv \text{Random variable for } i^{\text{th}} \text{ ADC sample}$

Real Time Compression Algorithm

• We choose to let the FE's GPU and CPU handle compression for flexibility

CPU Allocate memory for X, Y, t, r'_{c} Initialization Compute initial guess fit $Y(t_0)$	e)	Data loop (many times) Wait for enough traces		info fro to allo	eader om r' _c ocate ory for r _c	Stitch together r_c from r' _c Store r_c , t_0^*
Copy initial guess, Y(t ₀)		Copy many traces, X (Overwrite)	C	Copy r' _c , t _o *		
GPU Allocate memory for $X,Y(t_0),t_0^*,t,r,r_c^*$		Laun threa trace	nd per via χ^2	Golomb encode $r \rightarrow r'_{c}$		
		time				

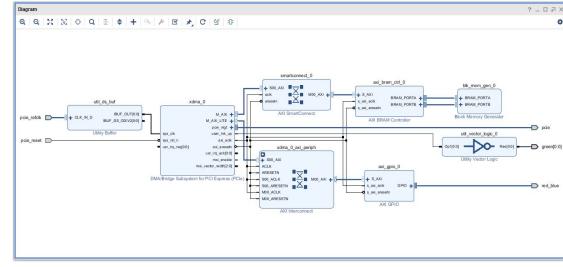

GPU Benchmarking (Timings)

- Block Size:
 - A GPU parameter, number of threads per multiprocessor

Can compress 2²⁶ integers

 (32-bit) in roughly ⅓ of a second.
 → ~ 0.8 GB/s compression rate

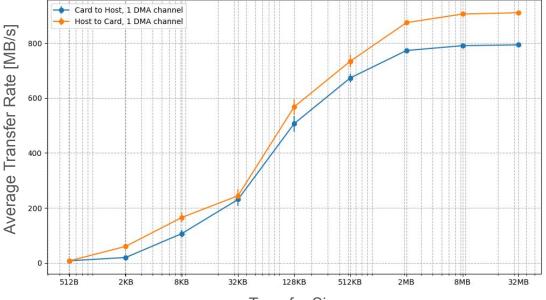
Fit + Compression Time using A5000 in PCIe4 (Batch Size = 1024)


PCIe DMA Data Transfer

- Testing using a PCIe development board
 - Tested on PCIe2 x4

 Using Vivado IP blocks, we can create PCIe DMA design

Nereid K7 PCI Express FPGA Development Board



Example block diagram (made in Vivado) for a PCIe FPGA

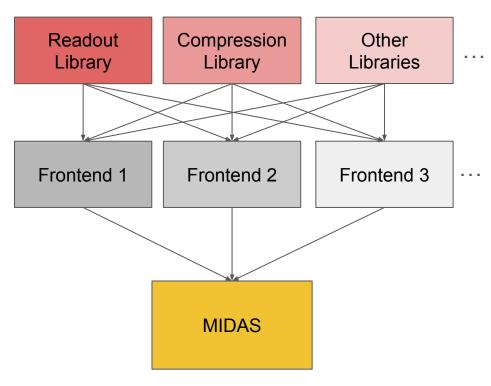
PCIe DMA Data Transfer

- Speeds here are limited by the board's transfer rate
 - Board can only handle
 5GT/s (PCIe gen 2)
 - Expect faster for other boards
- Transfer rate ~1GB/s in ballpark of PIONEER rate (3.5 GB/s)
- Better to transfer in large packets

Transfer Speed Vs. Transfer Size

Transfer Size

Software Development

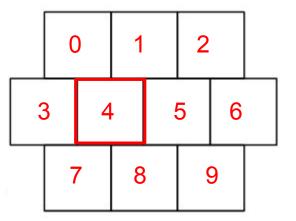

- Developed modular software working around midas
 - Useful for Calo test beam DAQ
 - Detached from Calo test beam DAQ, can be used with PIONEER DAQ
- Examples:
 - Midas Event Unpacker
 - Midas Event Publisher
 - Generalized DQM
 - Computer System Monitor

				Data	Viewer			
Run: 238			Sub-R	սո։ 0	Event: 3452			
Address	Channel Name	Total Publishes	Total Data Size [bytes]	Average Data Size [bytes]	Publish Rate [publishes/s]	Data Rate [bytes/s]	Start Time	Last Receive Time
p://127.0.0.1:5555	//127.0.0.1:5555 DATA 154		18919670	122900	3.869	475400	6/11/2024, 3:51:37 AM	6/11/2024, 3:52:16 AM
p://127.0.0.1:5555	HIST	32	150729	4710	0.8289	3905	6/11/2024, 3:51:37 AM	6/11/2024, 3:52:15 AM 6/11/2024, 3:52:15 AM
p://127.0.0.1:5555	ODB	34	41581791	1223000	0.8807	1077000	6/11/2024, 3:51:37 AM	
p://127.0.0.1:5555	PERF	153	311355	2035	3.883	7902	6/11/2024, 3:51:37 AM	6/11/2024, 3:52:16 AM
IC Slot: 7, Channel: 2, IC Slot: 7, Channel: 3, IC Slot: 7, Channel: 3, IC Slot: 7, Channel: 4, IC Slot: 7, Channel: 4, IC Slot: 7, Channel: 4, Update Frequency (Hz):	Channel ID: 0, Channel Type: h Channel ID: 0, Channel Type: N Channel ID: 0, Channel Type: N I Ilistogram	NaN, Crate Num: 1 - Sum Hi NaN, Crate Num: 1 NaN, Crate Num: 1 - Sum Hi NaN, Crate Num: 1	Istogram Toggle All Hists					
ots				lot: 7, Channel: 0, Channel ID: 0, Ch	and Tree Nett Casts Name 4			

Generalized DQM Webpage

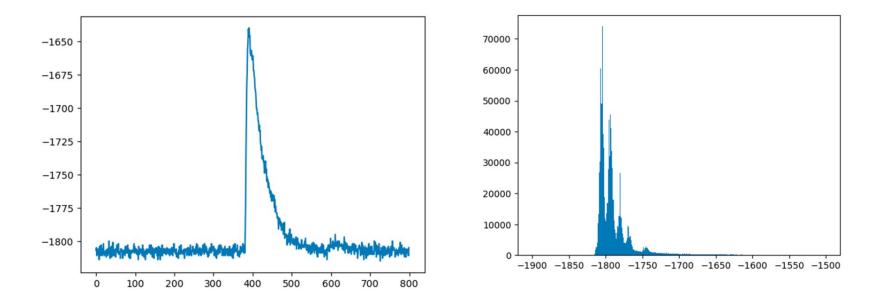
Software Development Plan

- Continue writing modular software
 - Will make experiment DAQ code much more manageable in the future
- Write PCIe readout libraries usable for PIONEER
- Write compression libraries usable for PIONEER
- Write midas frontend to read data out of FPGA over PCIe
 - Rate test, compression test



Auxiliary Slides

Data Set


- PSI Test beam, Run 1887
- 70 MeV/c centered on LYSO crystal 4.
- The data only includes lyso channels (no Nal for instance)
- More details on that run are in this elog

(https://maxwell.npl.washington.edu/ elog/pienuxe/R23/124)

LYSO traces

- Select only LYSO channels and traces with a signal
- No pedestal subtraction, fitting, etc. (yet)

Entropy and Lossless Compression

- For lossless compression, the best possible compression rate is the entropy rate
- To first order, the entropy of an entire trace is:

$$H(X_1, ..., X_n) = -\sum_{\text{traces}} p(X_1, ..., X_n) \log_2(p(X_1, ..., X_n))$$

- X_i is the random variable for the ADC value of the ith sample in the trace with n samples
- If we assume X_i independent, then

$$H(X_1, ..., X_n) = H(X_1) + ... + H(X_n)$$

• By transforming ($X_i
ightarrow$ fit residuals), X_i becomes approximately independent

Higher Order Entropy Estimations

- Assume we have N characters (traces) in our alphabet (data set)
- **Zero order:** each character in alphabet $H = \log_2(N)$ is statistically independent
- First order: each character in alphabet is statistically independent, p_i is the $\sum p_i \log_2(p_i)$ probability of that character to occur i=1
 - **Second order:** P_{iii} is correlation between subsequent characters
 - General Model (impractical): B represents the first n characters

$$H = -\sum_{n=1}^{N} n \log_{2}(n)$$

Η

$$I = -\sum_{i=1}^{N} p_i \sum_{j=1}^{N} P_{j|i} \log_2(P_{j|i})$$

$$=\lim_{n\to\infty} \left[-\frac{1}{n} \sum p(B_n) \log_2(B_n) \log_2(B_n$$

Joint Entropy, Mutual Information

$$H(X_1, ..., X_n) \le H(X_1) + ... + H(X_n)$$

Equality only holds if

 $X_1, ..., X_n$ are mutually statistically independent

This means if

$$I(X_1, X_2) = H(X_1) + H(X_2) - H(X, Y) = 0$$

Then we must have X_1 and X_2 be statistically independent

Joint entropy for Independent Variables Proof

Statement:

$$H(X_1, ..., X_n) = \sum_{i=1}^n H(X_i)$$

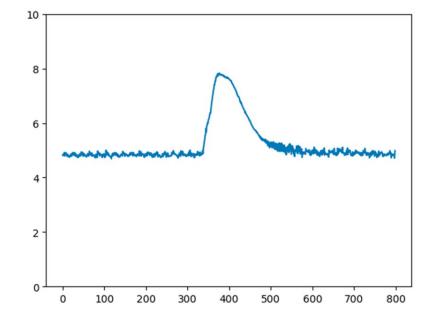
Proof (part 1):

$$H(X_1, ..., X_n) = -\sum_{x_1, ..., x_n} P(x_1, ..., x_n) \log_2(P(x_1, ..., x_n))$$

$$= -\sum_{x_1, ..., x_n} P(x_1) ... P(x_n) (\log_2(P(x_1)) + ... + \log_2(P(x_n)))$$

(Note: I am lazy, each P(x_i) represents a different pdf in general)

4

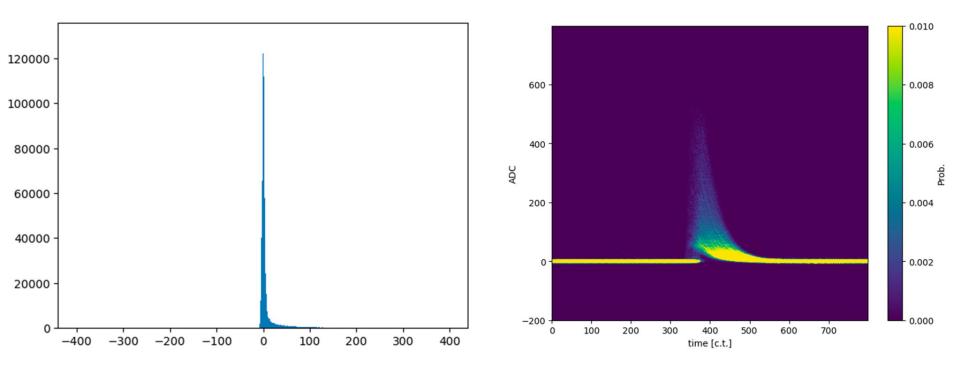

Joint entropy for Independent Variables Proof

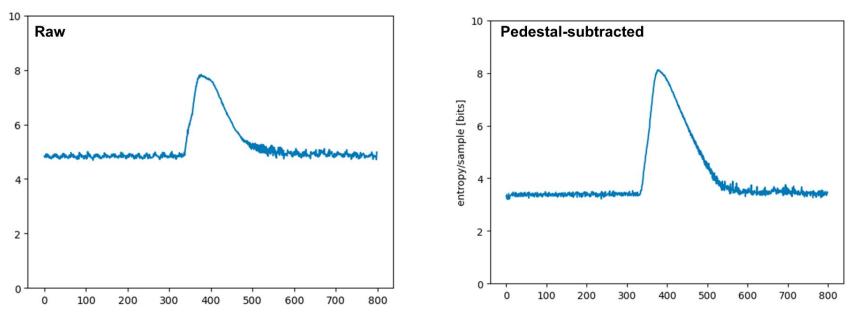
Proof (part 2):

$$H(X_1, ..., X_n) = -\left(\sum_{x_1} P(x_1) \log_2(P(x_1))\right) \left(\sum_{x_2} P(x_2) \cdot ... \cdot \sum_{x_n} P(x_n)\right)$$

 $-...$
 $-\left(\sum_{x_1} P(x_1) \cdot ... \cdot \sum_{x_{n-1}} P(x_{n-1})\right) \left(\sum_{x_n} P(x_n) \log_2(P(x_n))\right)$
Note $\sum_{x_i} P(x_i) = 1$ and $\sum_{x_1} P(x_i) \log_2(P(x_i)) = H(X_i)$
 $= H(X_1) + ... + H(X_n) \blacksquare$

Entropy estimation


- Average entropy per bit: 5.22 bits / sample (compare to 16 bits for a short)
- Samples near waveform edge have lower entropy
- Samples near middle have higher entropy, due to the pulses
- Entropy is nonzero b/c the waveforms are **not** identical: difference pedestals, different pulse sizes


Entropy vs. sample number

Citation: Entropy estimates of PSI test beam data, Sean Foster (slides)

Pedestal subtracted

Entropy estimation

- Entropy reduced for samples near waveform edge: ~3.4 bits
- Average entropy per sample now: 4.05 bits/sample

Discrete Gaussian entropy

• If we assume gaussian noise: entropy of 3.4 bits -> $\sigma = 2.6$

• If we look at samples < samples number 200 and fit ADC to gaussian: $\sigma = 2.4$

Template fit

- Constructing a template
 - Normalized all traces
 - Time-align the peak

-1640

-1660

-1680

-1700

-1720 -

-1740

-1760

-1780

-1800

Raw

100 200

300

400 500

600 700

800

100

200

300

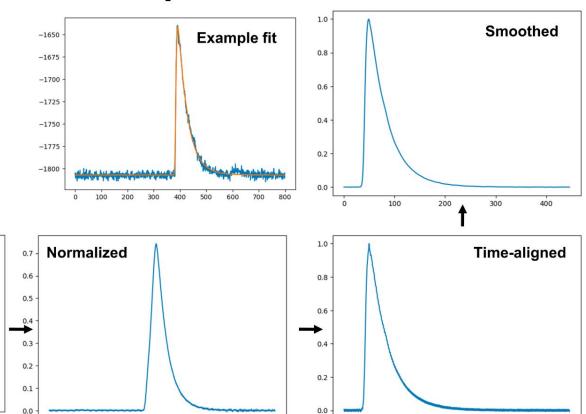
400 500

600

700

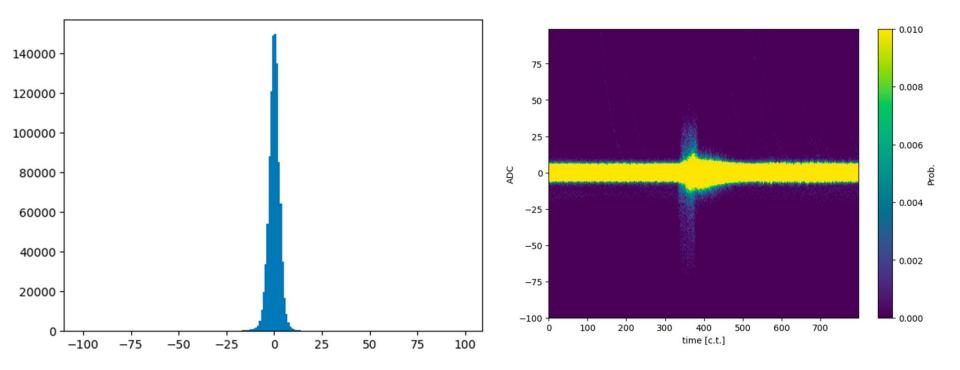
800

100

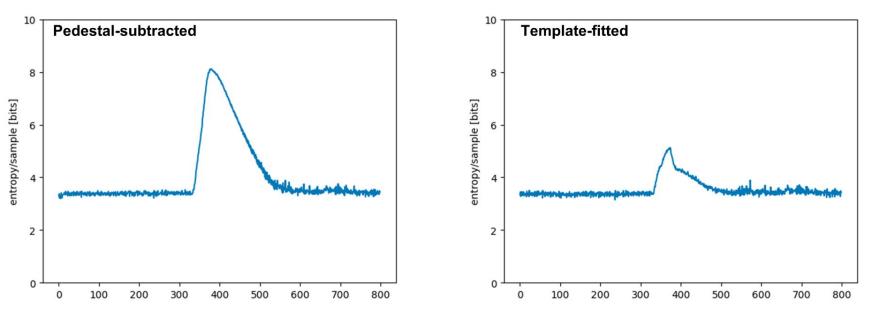

0

200

300

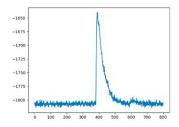

400

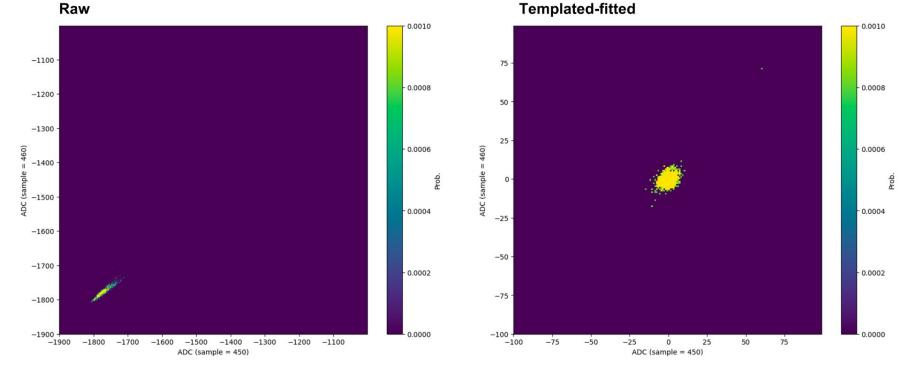
- Smooth over adjacent sample
- Fit with $f(t) = A \cdot T(t t_0) + C$



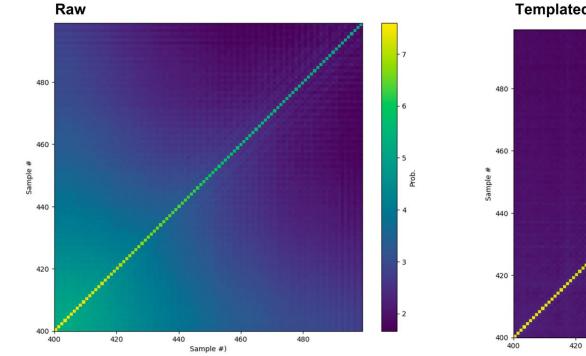
Citation: Entropy estimates of PSI test beam data, Sean Foster (slides)

Template fit

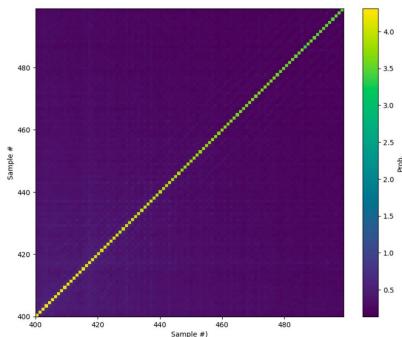

Entropy estimation



- Baseline hasn't changed much. Makes sense since fluctuations remain
- Peak in middle is reduced, but evidently we can still do better
- Average entropy per sample now: 3.55 bits/sample

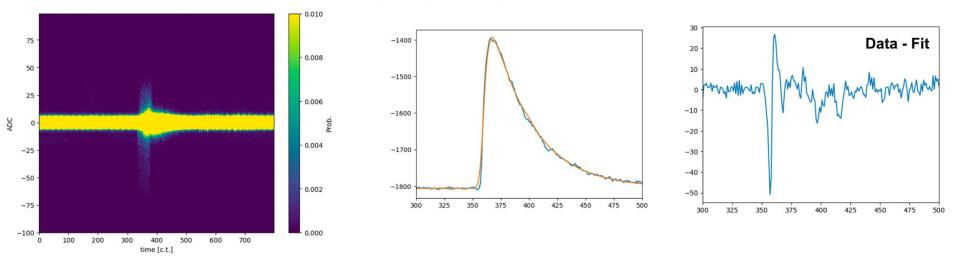

Citation: Entropy estimates of PSI test beam data, Sean Foster (slides

Correlations



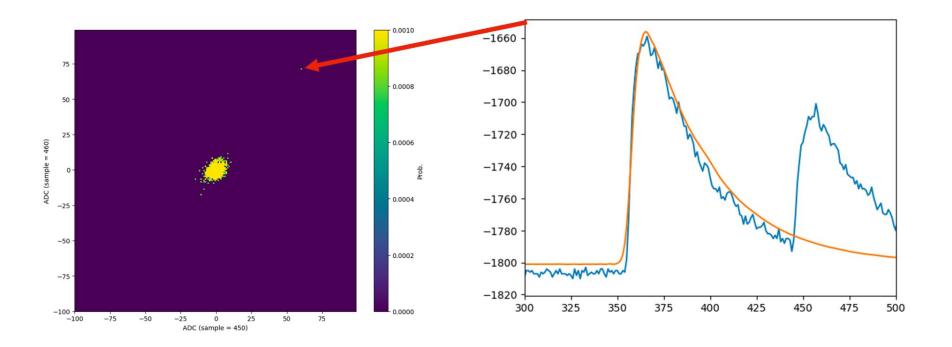
Mutual Information

Templated-fitted

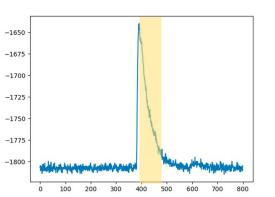

-1650 -1675

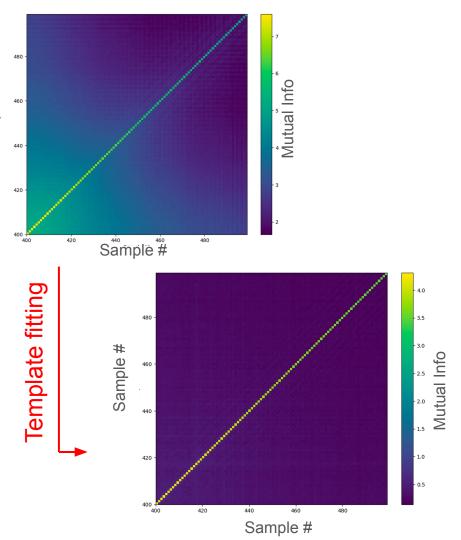
-1700 -1725 -1750 -1775 -1800

H(X) + H(Y) - H(X, Y) nonzero means there are still correlations

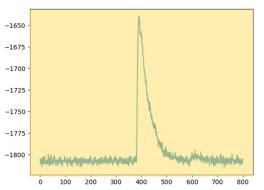

Template fitting going wrong

- What's causing the spread at the start of the pulse ~360 c.t. or so? (right plot)
- Seems like my template fit going wrong at the pulse turn-on


Citation: Entropy estimates of PSI test beam data, Sean Foster (slides)


Stray point due to pileup

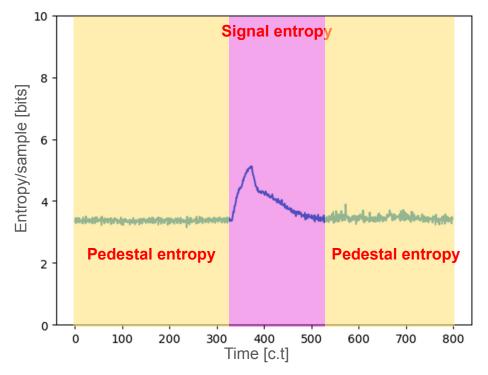
Mutual Information


- Mutual Information: $I(X_1, X_2) = H(X_1) + H(X_2) - H(X_1, X_2)$
- $I(X_1, X_2) = 0 \implies$ no correlation
- Template fitting reduces correlations between subsequent samples



Entropy Estimation

- Average entropy: $H_{\text{avg}} = \frac{\sum_{i=1}^{N} H(X_i)}{N}$
- In this case N = 800
- Before: H_{avg} = 5.22 bits/sample
- After: H_{avg} = 3.55 bits/sample
- Some room for improvement(?)



Explanation of Entropy Plot

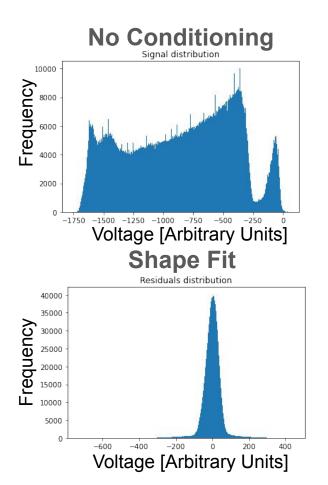
- The pedestal is easy to fit, so the variance of the pedestal part of the signal is is just the noise of the WFD5s.
 - This is the minimum possible entropy when using this equipment
- The signal is harder to fit and therefore has more variance
 - Entropy of this part of the trace is therefore larger

Entropy Rate of PSI Test Beam Data After Fitting

Theoretical Best Compression Calculation

Assuming data is sent as 12 bit ADC samples over PCIe at a data rate of 3.5 GB/s:

Compression Ratio = $\frac{\text{Entropy Rate}}{12}$ Storage Data Rate = Compression Ratio · 3.5 GB/s


Entropy rate = $3.4 \rightarrow$ New Data Rate ≈ 0.99 GB/s

Entropy rate = 5 \rightarrow New Data Rate \approx 1.46 GB/s

Signal Conditioning

- Want a narrow distribution for compression. Let r_i be the numbers we compress
- Methods tried:
 - No conditioning
 - Delta encoding:
 - $r_{i} = y_{i+1} y_{i}$
 - Twice Delta Encoding:
 - $r_i = y_{i+2} 2y_{i+1} + y_i$
 - Double Exponential Fit: $r = v = (A \cdot avp(at) + B \cdot avp(at))$
 - $r_i = y_i (A \cdot exp(at_i) + B \cdot exp(bt_i))$
 - Shape Fit:

$$\mathbf{r}_i = \mathbf{y}_i - (\mathbf{A} \cdot \mathbf{T}(\mathbf{t}_i - \mathbf{t}_0) + \mathbf{B}$$

Shape Fitting Algorithm

- 1. Construct a discrete template from sample pulses
- 2. Interpolate template to form a continuous Template, T(t)
- 3. "Stretch" and "shift" template to match signal:

$$X[i] = a(t_0)T(t[i] - t_0) + b(t_0)$$

[Note: a and b can be calculated explicitly given t_0]

4. Compute χ^2 (assuming equal uncertainty on each channel i) $\chi^2 \propto \sum_i \{X[i] - a(t_0)T(t[i] - t_0) + b(t_0)\}^2$ 5. Use Euler's method to minimize χ^2

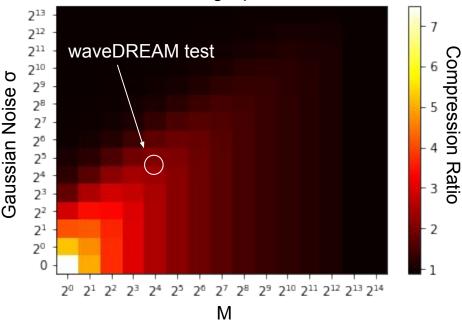
Lossless Compression Algorithm

- Rice-Golomb Encoding
 - Let x be number to encode
 - y = "**s**"+"**q**"+"**r**"
 - q = x/M (unary)
 - r = x%M (binary)
 - **s** = sign(x)
 - Any distribution
 - Close to optimal for valid choice of M
 - One extra bit to encode negative sign
 - Self-delimiting
 - If quotient too large, we "give up" and write x in binary with a "give up" signal in front

Rice-Golomb Encoding (M=2)

Value	Encoding			
-1	011			
0	000			
1	001			
2	10 0 0			

```
Red= sign bitBlue= quotient bit(s) (Unary)Yellow= remainder bit (binary)
```

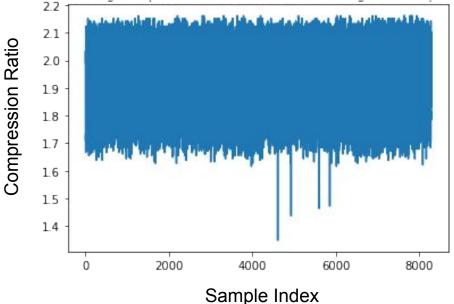

How to choose Rice-Golomb parameter M

 Generated fake Gaussian data (centered at zero) with variance σ²

- For random variable X,
 M ≈ median(|X|)/2 is a good choice
 - This is the close to the diagonal on the plot

 σ ≈ 32 for residuals of shape on wavedream data → M = 16 is a good choice

Determining Optimal M

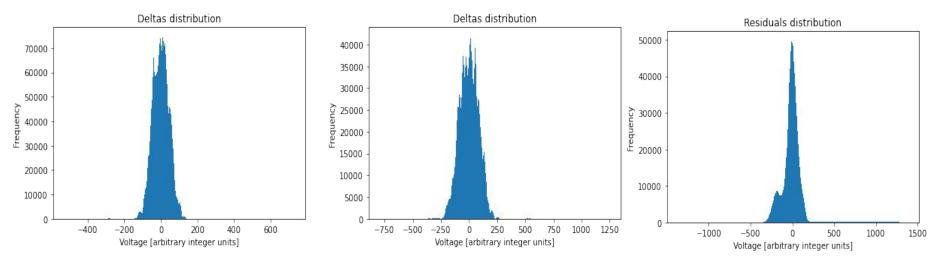


Compression Ratio from Rice-Golomb Encoding

Lossless compression factor of ~2

• In agreement with plot from simulated data on last slide

 Data is much noisier than than PSI test beam, so we get a smaller compression factor Rice-Golomb Compression on Residuals (M = 16)



Other Conditioning Distributions

Delta Encoding

Twice Delta Encoding

Double Exponential Fit

Shape Fitting Details

Fit Function

$$X[i] = aT(t[i] - t_0) + b$$

Explicit a(t₀) calc
$$a(t_0) = \frac{\sum_{i=1}^{N} X[i] \sum_{i=1}^{N} T(t[i] - t_0)^2 - \sum_{i=1}^{N} T(t[i] - t_0) \sum_{i=1}^{N} T(t[i] - t_0) X[i]}{N \sum_{i=1}^{N} T(t[i] - t_0)^2 - (\sum_{i=1}^{N} T(t[i] - t_0))^2}$$

Explicit b(t₀) calc
$$b(t_0) = \frac{N \sum_{i=1}^{N} T(t[i] - t_0) X[i] - \sum_{i=1}^{N} T(t[i] - t_0) \sum_{i=1}^{N} X[i]}{N \sum_{i=1}^{N} T(t[i] - t_0)^2 - (\sum_{i=1}^{N} T(t[i] - t_0))^2}$$

Explicit χ^2 calc

Newton's method

$$f(t_0) \equiv \chi^2 \propto \sum_{i} \{X[i] - a(t_0)T(t[i] - t_0) + b(t_0)\}^2$$
$$(t_0)_{n+1} = (t_0)_n - \frac{f'((t_0)_n)}{f''((t_0)_n)}$$

Threshold requirement $|(t_0)_{n+1} - (t_0)_n| < \epsilon \equiv$ "Threshold"

Golomb Encoding

In general, M is an arbitrary choice

- Since computers work with binary, $M = 2^{x}$ such that x is an integer is a "fast" choice
 - This is called Rice-Golomb Encoding Ο

Self delimiting so long as the information M is provided

Golomb Encoding Example

Choose M = 10, b = $\log_2(M) = 3$ $2^{b+1} - M = 16 - 10 = 6$ $r < 6 \rightarrow r$ encoded in b=3 bits $r \ge 6 \rightarrow r$ encoded in b+1=4 bits

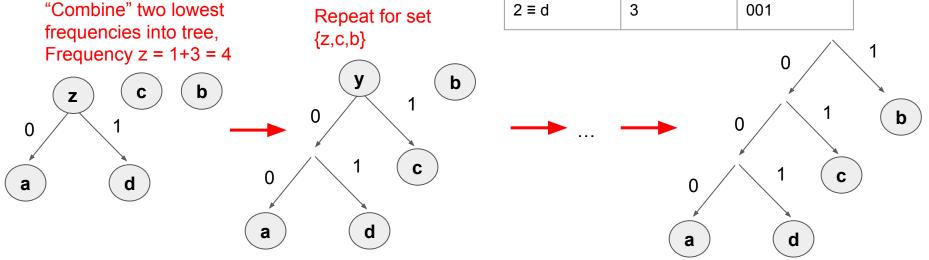
q

0

1

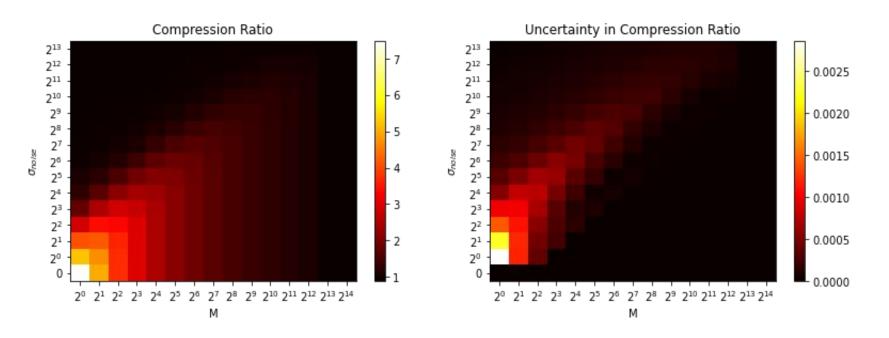
2

Ν


Encoding of quotient part		Encoding of remainder part				
		offset	binary	output bits		
output bits	0	0	0000	000		
0	1	1	0001	001		
10	2	2	0010	010		
110	3	3	0011	011		
1110	4	4	0100	100		
11110	5	5	0101	101		
111110	6	12	1100	1100		
1111110	7	13	1101	1101		
:	8	14	1110	1110		
1111110	9	15	1111	1111		
	part output bits 0 10 110 1110 11110 111110 111110 111110	part r output bits 0 0 1 10 2 110 3 1110 4 11110 5 111110 6 1111110 7 : 8	part r offset output bits 0 0 0 1 1 10 2 2 110 3 3 1110 4 4 11110 5 5 111110 6 12 1111110 7 13 : 8 14	part r offset binary output bits 0 0 0000 0 1 1 0001 10 2 2 0010 110 3 3 0011 1110 4 4 0100 11110 5 5 0101 111110 6 12 1100 1111110 7 13 1101 : 8 14 1110		

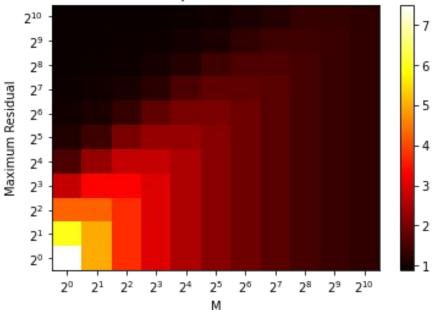
Huffman Encoding

- Requires finite distribution
- Values treated as "symbols"
- Self-delimiting (sometimes called "greedy")

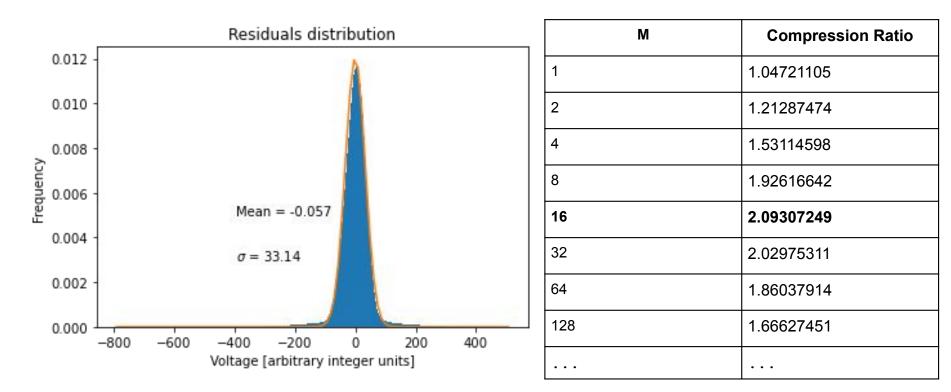

Huffman Encoding Example

Value	Frequency	Encoding		
-1 ≡ a	1	000		
0 = b	10	1		
1 ≡ c	5	01		
2 ≡ d	3	001		

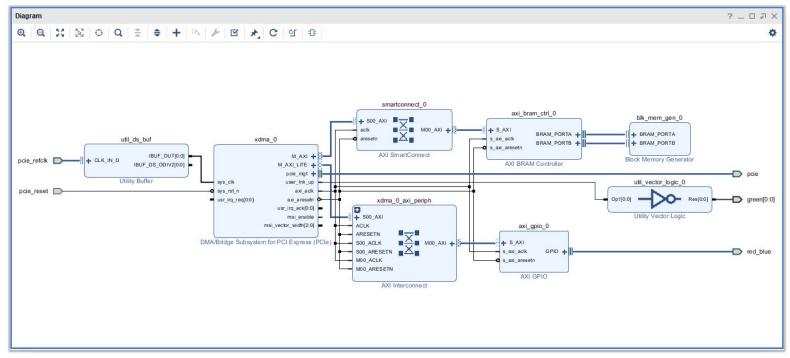
Theoretical Uncertainty in Compression Ratio from Gaussian Noise


• ~ 0.1% relative error

Uniform Distribution of Noise effect on Compression Ratio


• Here instead we use a uniform distribution to generate the noise

• Not much different than gaussian noise, same conclusions really



Compression Ratio

Residuals Distribution and Optimal M

PCIe DMA Block Diagram in Vivado

Example block diagram (made in Vivado) for a PCIe FPGA

PCIe Transfer Speeds for Different Generations

VERSION	INTRODUCTION LINE CODE YEAR	TRANSFER	THROUGHPUT					
			RATE	1x	x2	x4	×8	x16
1	2003	8b/10b	2.5 GT/s	0.250 GB/s	0.500 GB/s	1.000 GB/s	2.000 GB/s	4.000 GB/s
2	2007	8b/10b	5.0 GT/s	0.500 GB/s	1.000 GB/s	2.000 GB/s	4.000 GB/s	8.000 GB/s
3	2010	128b/130b	8.0 GT/s	0.985 GB/s	1.969 GB/s	3.938 GB/s	7.877 GB/s	15.754 GB/s
4	2017	128b/130b	16.0 GT/s	1.969 GB/s	3.938 GB/s	7.877 GB/s	15.754 GB/s	31.508 GB/s
5	2019	128b/130b	32.0 GT/s	3.938 GB/s	7.877 GB/s	15.754 GB/s	31.508 GB/s	63.015 GB/s
6.0	2021	128b/130b + PAM - 4 + ECC	64.0 GT/s	7.877 GB/s	15.754 GB/s	31.508 GB/s	63.015 GB/s	126.031 GB/s