Center for Experimental Nuclear Physics and Astrophysics (CENPA) University of Washington

Trigger Refresher

Peter Kammel

More a discussion starter than presentation

Peter Kammel – PIONEER – Trigger

Recap: Main physics triggers

Triggers (unchanged since proposal)

$-\mathsf{PI}$

This is a minimum bias trigger, prescaled by k~1000

– CaloH N_{HE}

Selection of high energy (Eh \gtrsim 50 MeV) events detected by the CALO within a time range TR=[-300,700] ns relative to PI

-TRACK N_{LE}

All events with TRACKER hit within time range TR relative to PI, prescaled by $k\sim50$

-PROMPT Tail

Selected prompt events with a TRACKER hit in time range [-5,40] ns relative to PI

- Additional?

Rates and statistics

Triggers

$-\mathsf{PI}$

This is a minimum bias trigger, prescaled by k~1000. ATAR in, no out in last sensors.

– CaloH N_{HE}

Selection of high energy (Eh \gtrsim 50 MeV) events detected by the CALO within a time range TR=[-300,700] ns relative to PI

-TRACK N_{LE}

All events with TRACKER hit within time range TR relative to PI, prescaled by $k\sim50$

-PROMPT Tail

Selected prompt events with a TRACKER hit in time range [-5,40] ns relative to PI

- Additional?

triggers	prescale	range	rate	CALO			ATAR digitizer			ATAR high thres	
		$\mathrm{TR}(\mathrm{ns})$	(kHz)	$\Delta T(ns)$	chan	MB/s	$\Delta T(ns)$	chan	MB/s	chan	MB/s
PI	1000	-300,700	0.3	200	1000	120	30	66	2.4	20	0.012
CaloH	1	-300,700	0.1	200	1000	40	30	66	0.8	20	0.004
TRACK	50	-300,700	3.4	200	1000	1360	30	66	27	20	0.014
PROMPT	1	[-5,40]	5	200	1000	2000	30	66	40	20	0.2

- Limitations

- PROMPT combined with the 10-20 kHz readout limitation of ATAR electronics is bottleneck to increase time range.
 Either faster digitizer or ATAR based selection of time slices.
- Assumptions
 - CALO calculates *E*tot within 200 ns
 0.3 MHz*0.2us= 15%, continuous not really DT
 - ATAR 5-10 kHz, limited by digitization 200us, can be improved.
 - CALO: 2B*200samples/island*1000islands=400kB/trigger
 - ATAR: 4B*30ns*66strips=8 kB x2-3? due to cross talk
- Todo
 - Update with MC multiplicities and rates
 - Detailed discussion of ATAR HD-Soc deadtime, probably estimate somewhat pessimistic, clarify
 - Fit studies to determine optimal TR

Discussion topics

Triggers

$-\mathsf{PI}$

This is a minimum bias trigger, prescaled by k~1000

– CaloH N_{HE}

Selection of high energy (Eh \gtrsim 50 MeV) events detected by the CALO within a time range TR=[-300,700] ns relative to PI

-TRACK N_{LE}

All events with TRACKER hit within time range TR relative to PI, prescaled by $k\sim50$

-PROMPT Tail

Selected prompt events with a TRACKER hit in time range [-5,40] ns relative to PI

- Additional

continuously record π, μ signals with high threshold discriminator on ATAR

- Why use TRACKER and no CALO trigger
 - Hard to trigger on low CALO signal?
 - But we should certainly trigger on OR between TRACK and CALO
- Can we enrich PROMPT
 - Not required, as I don't expect prescaling
- However, can we enrich PROMPT for long window fit?
 - Extend to 2us, depending on digitizer and sampling rate
 - Enrich or prescale?
- Can we continuously record π, µ signals with high threshold discriminator on ATAR, reduced time resolution
 - Not with HD-Soc, but we could develop discriminator, splitter ASIC
 - Needs study on justification
- Can we trigger on ATAR
 - Xin worried about e which don't make it out of ATAR. With current digitizer we cannot trigger on ATAR. My hope is that min. bias will allow such studies
- Are we losing 30% of events
 - Because we trigger only once per 1us, with 30% muon PU
 - Incorrect thinking, not R_{π}^* 0.3, but R_{trig}^* 0.3~3kHz losses

deadtime < 10% T

- current version HDSoC 64 channels (status, does it exist already?)
- full readout rate < 1 kHz, few ms scale
- but only 2 us for 32 sample digitization. Thus 1 channel should be read out in 64*2us=128 us.
- the residual bottle neck from transfer at 500 MB/s. Readout of all channels in 1ms would be 64x12bits?x2048x1000x1e-6=1500 MB/s.
- dynamic range: 0.4-2V. A little bit more if pulses with cut off peaks are acceptable.
- analog bandwidth 0.8 GHz or 0.6? Some Nalu documents quote 0.6. If your sampling rate is only 1 GHz, you would have to reduce the input BW to below 0.5 GHz to avoid Nyquist.